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Abstract. We consider a subclass of the class of group-theoretical
fusion categories: To every finite group G and subgroup H one can
associate the category of G-graded vector spaces with a two-sided
H-action compatible with the grading. We derive a formula that
computes higher Frobenius-Schur indicators for the objects in such
a category using the combinatorics and representation theory of the
groups involved in their construction. We calculate some explicit
examples for inclusions of symmetric groups.

1. Introduction

Higher Frobenius-Schur indicators are invariants of an object in a
pivotal fusion category (and hence also invariants of that category).
They generalize, to higher degrees and more general objects, the degree
two Frobenius-Schur indicator defined for a representation of a finite
group by its namesakes in 1906. Categorical versions of degree two
indicators were studied by Bantay [1] and Fuchs-Ganchev-Szlachányi-
Vescernyés [3], indicators for modules over semisimple Hopf algebras
were introduced by Linchenko-Montgomery [8] and studied in depth by
Kashina-Sommerhäuser-Zhu [7]. The degree two indicators for modules
over semisimple quasi-Hopf algebras were treated by Mason-Ng [9]. The
higher indicators for pivotal fusion categories that we deal with in the
present paper were introduced in [12, 14, 13].

Frobenius-Schur indicators have become a tool for the structure the-
ory and classification of fusion categories. The problem we deal with
here, however, is simply how to calculate them in very specific ex-
amples. More concretely we will deal with a specific class of group-
theoretical fusion categories. Degree two indicators for Hopf algebras
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associated with such categories have been studied in [6]. In [7] formu-
las for higher indicators of smash product Hopf algebras associated to
a group acting by automorphisms on another group were given. This
class of examples includes the Drinfeld double of a finite group. For
such doubles, the explicit formulas were used to study the question of
integrality of the indicators in [5]. Extensive computer calculations, in
particular with a view on the question whether the indicators of the
doubles of symmetric groups are positive, were conducted in [2].

Natale [11] has derived formulas for the degree two Frobenius-Schur
indicators of the objects in general group-theoretical fusion categories.
Her approach is based on the fact that a group-theoretical fusion cate-
gory can be written as the module category over a quasi-Hopf algebra
which is known explicitly. Then the explicit definition of degree two
indicators of modules over quasi-Hopf algebras in [9] can be applied.

In principle the same approach, using now the higher indicator for-
mula for quasi-Hopf algebras from [12], could be used to obtain higher
indicator formulas for group-theoretical categories. However, those for-
mulas involve iterated applications of the associator elements of the rel-
evant quasi-Hopf algebra dealing with the parentheses of iterated tensor
products in the category. Applying them with the explicit quasi-Hopf
structure deriving from the data of a group-theoretical fusion category
seems a formidable task.

We will take an entirely different approach. The formula from [13,
Thm. 4.1.], generalizing the “second formula” from [7], links higher
Frobenius-Schur indicators in a spherical fusion category C to the rib-
bon structure of the Drinfeld center Z(C) and the functor from C to
Z(C) adjoint to the underlying functor. A group-theoretical fusion cat-
egory is the monoidal category of bimodules over the (twisted) group
algebra of a subgroup H of a finite group G inside the category VectG
of G-graded vector spaces (twisted by a three-cocycle on G). By [18],
the Drinfeld center of such a bimodule category is equivalent to the
Drinfeld center of the “ambient” category. We will treat the case of
a group-theoretical fusion category defined without cocycles. Thus
C = G

HMH , the center is Z(GHMH) = Z(VectG), equivalent to the
category of modules over the Drinfeld double of G.

In a sense the underlying functor Z(VectG) → G
HMH is already

known explicitly from [18], but we need to do more. Simple objects
in G

HMH are parametrized by group-theoretical data, namely (equiva-
lence classes of) pairs consisting of an element of G and an irreducible
representation of a certain stabilizer subgroup of H. Simple objects
of Z(VectG) are also classified by group-theoretical data, (equivalence
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classes of) pairs consisting of an element of G and an irreducible repre-
sentation of its centralizer. In section 3 we will describe the underlying
functor Z(VectG) → G

HMH on the level of simple objects by a for-
mula involving only the combinatorics and representation theory of
subgroups of G. Given this description one can turn things around
and describe the adjoint functor GHMH → Z(VectG) equally explicitly.
Admittedly the resulting description, while completely explicit and en-
tirely on the level of groups, subgroups, and group representations, is
quite unwieldy — this is perhaps natural, since one has to deal with
how conjugacy classes and centralizers (involved in the description of
modules over the Drinfeld double) relate to double cosets of a fixed
subgroup, and stabilizers of one-sided cosets under the regular action
(involved in the description of GHMH).

In section 4 we will use the description of the adjoint functor and the
“second formula” to obtain a formula for the higher indicators of the
simple objects of GHMH . Luckily we do not need the entire information
on the adjoint, but only the traces of the ribbon structure on the images
under the adjoint. This allows to dramatically simplify the immediate
result based on the complicated description of the adjoint to obtain
a surprisingly simple-looking formula for the higher indicators. It is
in fact even simpler than Natale’s formula for second indicators, and
uses only group characters and the combinatorics of group elements
and subgroups, without mentioning the associated quasi-Hopf algebra
and its characters at all. One should admit, though, that characters of
the associated quasi-Hopf algebra are in turn described in more “basic”
terms in [11]. Also, our results are marred by the obvious flaw that
they do not treat general group-theoretical categories, but only those
in whose definition the relevant group cocycles are trivial — we hope
to amend this flaw in a future paper.

We also treat variants of the indicator formula that are more com-
plicated, involving passing to orbits under the action of auxiliary sub-
groups, but computationally advantageous for the same reason that
they pass from sums over the entire group H to sums over certain
orbits.

In section 5 we will explicitly calculate indicators in several exam-
ples of fusion categories associated to an inclusion of symmetric groups
Sn−2 ⊂ Sn. We use the “simple” version of our indicator formula for
the cases n = 4, 5. The cases n = 6, 7 illustrate how the more com-
plicated versions reduce the size of the calculations needed down to a
manageable size.
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2. Preliminaries

Throughout the paper, G is a finite group, and H ⊂ G a subgroup.
We denote the adjoint action of G on itself by x . g = xgx−1. If V is a
representation of a subgroup K ⊂ G, and x ∈ G, we denote by x . V
the twisted representation of x . K with the same underlying vector
space V on which y ∈ x . K acts like x−1 . y ∈ K.

We work over the field C of complex numbers, representations are
complex representations, and characters ordinary characters.

The category G
HMH := CG

CHMCH is defined as the category of CH-
bimodules over the group algebra of H, considered as an algebra in the
category of CG-comodules, that is, of G-graded vector spaces. Thus, an
object of GHMH is a G-graded vector spaceM ∈ VectG with a two-sided
H-action compatible with the grading in the sense that |hmk| = h|m|k
for h, k ∈ H and m ∈M .

The category G
HMH is a fusion category. The tensor product is the

tensor product of CH-bimodules. Simple objects are parametrized by
irreducible representations of the stabilizers of right cosets of H in G.
More precisely, let D ∈ H\G/H be a double coset of H in G, let d ∈ D,
and let S = StabH(dH) = H ∩ (d . H) be the stabilizer in H of the
right coset dH under the action of H on its right cosets in G. Then
the subcategory D

HMH ⊂ G
HMH defined to contain those objects the

degrees of all of whose homogeneous elements lie in D is equivalent to
the category Rep(S) of representations of S. The equivalence D

HMH →
Rep(S) takesM to (MdH)/H ∼= (M/H)dH/H , the space of those vectors
in the quotient of M by the right action of H whose degree lies in the
right coset of d. Details are in [19, 15]. We will denote the inverse
equivalence by Fd : Rep(StabH(dH)) → HdH

H MH , so that we have a
category equivalence⊕

d

Rep(StabH(dH))
(Fd)d−−−→ G

HMH

in which the sum runs over a set of representatives of the double cosets
of H in G. Of course D

HMH can be described by choosing a different
representative of D. If h ∈ H, then dh has the same right coset as
d, and Fdh = Fd, while StabH(hdH) = h . StabH(dH) and Fd(W ) =
Fhd(h . W ) for W ∈ Rep(StabH(dh)).

In the special case H = G the above description, with the neutral
element representing the sole class of G in G, amounts to the (well-
known) equivalence Rep(G) ∼= G

GMG sending V ∈ Rep(G) to V ⊗ CG
with the regular right G-action and the diagonal left G-action. This is
a monoidal category equivalence.
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The category G
GYD = CG

CGYD of (left-left) Yetter-Drinfeld modules
over CG has objects the G-graded vector spaces with a left G-action
compatible with the grading in the sense that |gv| = g|v|g−1 for g ∈ G
and v ∈ V ∈ G

GYD. The category G
GYD is the (right) center of the

category GM of G-graded vector spaces: The half-braiding c : U⊗V →
V ⊗U between a graded vector space U and a Yetter-Drinfeld module
V is given by u⊗v 7→ |u|v⊗u. To calculate indicators using the “second
formula” we also need the fact that the canonical pivotal structure of
G
GYD is given by the ordinary vector space isomorphism V → V ∗∗,
so that pivotal trace and ordinary trace coincide. Finally the ribbon
automorphism θ of an object V ∈ G

GYD is given by θ(v) = |v|v.
Simple objects of GGYD are parametrized by irreducible representa-

tions of the centralizers in G of elements of G. (In fact this can be
viewed as a special case of the description of graded bimodules above,
as we shall review in example 4.7 below). More precisely, let g ∈ G
and CG(g) the centralizer of g in G. Then a functor

Gg : Rep(CG(g))→ G
GYD

can be defined by sending V ∈ Rep(CG(g)) to the CG-module IndGCG(g) V =

CG ⊗
CCG(g)

V endowed with the grading given by |x ⊗ v| = xgx−1 for

x ∈ G and v ∈ V . We note the special case g = 1 which recovers
the canonical (monoidal) inclusion functor Rep(G)→ G

GYD. Summing
over different elements we obtain a category equivalence

⊕g Rep(CG(g))
(Gg)g−−−→ G

GYD.
The sum runs over a set of representatives of the conjugacy classes of
G, and the image of the functor Gg consists of those Yetter-Drinfeld
modules the degrees of whose homogeneous elements lie in the conju-
gacy class of g. We note for later use that the ribbon automorphism of
Gg(V ) is θ(x⊗ v) = (x . g)(x⊗ v) = xg ⊗ v = x⊗ gv; the trace of θm
is therefore [G : CG(g)]χ(gm) if χ denotes the character of V .

As a final piece of notation, we will write 〈M,N〉 := dimC(HomC(M,N))
for objects M,N in a semisimple category.

3. The center and the adjoint

By a result of Müger [10] the Drinfeld center Z(C) of a pivotal fusion
category C is a modular category, and the underlying functor Z(C)→ C
has a two-sided adjoint K. To handle the center of G

HMH and the
adjoint functor K we use the fact [18] that the center of a category of
bimodules in a tensor category C coincides, in many cases including the
present one, with the center of C itself.
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To be precise, we will use the “right center” Z(C) whose objects are
pairs (V, c) in which c : X ⊗ V → V ⊗X is a half-braiding defined for
any X ∈ C, and we denote by K the adjoint functor of the underlying
functor Z(C)→ C.

Then, writing C = GM = VectG for the category of G-graded vector
spaces, we have a category equivalence

G
GYD ∼= Z(C)→ Z(CHCCH) = Z(GHMH)

which sends (N, c) ∈ Z(C) to an object of Z(CHCCH) whose underlying
right CH-module is N ⊗CH, whose left CH-module structure is given
by

CH ⊗N ⊗ CH c⊗CH−−−→ N ⊗ CH ⊗ CH N⊗∇−−−→ N ⊗ CH
and whose half-braiding (which we do not need) is induced by the half-
braiding of N .

Thus, we identify Z(GHMH) = G
GYD, and we identify the underlying

functor Z(GHMH)→ G
HMH with the functor

U : GGYD 3 N → N ⊗ CH ∈ G
HMH ,

where the obvious right CH-module N⊗CH has the left module struc-
ture a(n⊗ b) = an⊗ ab and the grading |n⊗ b| = |n|b.

Next, let g ∈ G, set C := CG(g), and let V ∈ Rep(C). We consider

UGg(V ) = CG ⊗
CC
V ⊗ CH ∈ G

HMH .

Let Xg be a set of representatives of the double cosets in H\G/C, so
that G =

⊔
x∈Xg

HxC. Then each CHxC ⊗
CC
V ⊗CH ⊂ CG ⊗

CC
V ⊗CH

is a subobject in G
HMH , and we have

UGg(V ) =
⊕
x∈Xg

CHxC ⊗
CC
V ⊗ CH.

Note that the degrees of the homogeneous elements of CHxC ⊗
CC
V ⊗H

lie in the double coset H(x . g)H, so that CHxC ⊗
CC
V ⊗ CH is in the

image of the functor Fx.g. To calculate the preimage, observe first that
the degree of hxc⊗ v ⊗ h′ ∈ CHxC ⊗

CC
V ⊗CH is (hx . g)h′, and thus

in dH iff h ∈ StabH((x . g)H) =: J . Hence

CHxC ⊗
CC
V ⊗ CH = Fx.g(CJxC ⊗

CC
V ).

Next, observe that for j, j̃ ∈ J and c, c̃ ∈ C we have jxc = j̃xc̃ iff
j̃−1j = x . (c̃c−1), which implies that we have an isomorphism

CJxC ⊗
CC
V 3 jxc⊗ v 7→ j ⊗ cv ∈ CJ ⊗

C[J∩(x.C)]
(x . V ).
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We have shown:

CHxC⊗
CC
V⊗CH = Fx.g

(
Ind

StabH((x.g)H)
StabH((x.g)H)∩(x.C) Resx.CStabH((x.g)H)(x . V )

)
,

whence

UGg(V ) =
⊕
x∈Xg

Fx.g
(

Ind
StabH((x.g)H)
StabH((x.g)H)∩(x.C) Resx.CStabH((x.g)H)(x . V )

)
.

Let d ∈ G and S = StabH(dH). Let Hd be a set of representatives
of H/S. Thus the double coset HdH is the disjoint union HdH =⊔
h∈Hd

hdH, that is Hdd is a set of representatives of the right cosets
contained in HdH.

If x . g ∈ HdH, then there is a unique h ∈ Hd such that (x .
g)H = hdH, thus StabH((x . g)H) = StabH(hdH) = h . S, and for
a representation N of StabH((x . g)H) we have Fx.gN = FhdN =
Fd(h−1 . N). Thus

(UGg(V ))HdH =
⊕
x∈Xg

h∈Hd
x.g∈hdH

Fhd
(
Indh.S(h.S)∩(x.C) Resx.C(h.S)∩(x.C)(x . V )

)

=
⊕
x∈Xg

h∈Hd
x.g∈hdH

Fd
(
h−1 .

(
Indh.S(h.S)∩(x.C) Resx.C(h.S)∩(x.C)(x . V )

))
,

and if W ∈ Irr(S), then

〈UGg(V ),Fd(W )〉

=
∑
x∈Xg

h∈Hd
x.g∈hdH

〈
h−1 .

(
Indh.S(h.S)∩(x.C) Resx.C(h.S)∩(x.C)(x . V )

)
,W
〉

=
∑
x∈Xg

h∈Hd
x.g∈hdH

〈
Indh.S(h.S)∩(x.C) Resx.C(h.S)∩(x.C)(x . V ), h . W

〉
.

For the adjoint K of U this implies, by Frobenius reciprocity:〈
KFd(W ),Gg(V )

〉
=

∑
x∈Xg

h∈Hd
x.g∈hdH

〈
x−1 .

(
Indx.C(h.S)∩(x.C) Resh.S(h.S)∩(x.C)(h . W )

)
, V
〉
.

This means that we have calculated a formula for the adjoint K: de-
noting by C a system of representatives for the conjugacy classes of G,
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we have

KFd(W )

=
∑
g∈C
x∈Xg

h∈Hd
x.g∈hdH

Gg
(
x−1 .

(
Ind

x.CG(g)
(h.S)∩(x.CG(g)) Resh.S(h.S)∩(x.CG(g))(h . W )

))

=
∑
g∈C
x∈Xg

h∈Hd
x.g∈hdH

Gx.g
(

Ind
x.CG(g)
(h.S)∩(x.CG(g)) Resh.S(h.S)∩(x.CG(g))(h . W )

)
.

While this is clearly not a particularly pleasant or practical formula,
we can say something in its favor: It expresses the functor K entirely in
terms of the groups involved and their representations, using, of course,
the translation of group representations to objects in the two categories
involved via the functors F and G.

4. Indicator formulas for group inclusions

We retain the notations of the previous section, and proceed to cal-
culate the higher Frobenius-Schur indicators of objects in G

HMH . This
is based on the categorical version of the “second formula” in [7] that
calculates indicators in a fusion category C through the adjoint K

The formula obtained above for the adjoint K : GGYD → G
HMH yields,

via [13, Thm. 4.1], a formula for the higher indicators of the simple ob-
jects of GHMH . Since we are dealing with the right center, the relevant
formula, [13, Rem. 4.3], is

νm(X) =
1

|G|
Tr(θ−mK(X)

).

We proceed to use the information available on K to apply it.
First, let η′ be a character of (h.S)∩(x.C), and χ = Indx.C(h.S)∩(x.C)(η

′).
Then by a standard formula for induced characters

χ(x . gm) =
1

|(h . S) ∩ (x . C)|
∑
y∈x.C

y.x.gm∈h.S

η′(y . x . gm)

=

{
[x . C : (h . S) ∩ (x . C)]η′(x . gm) if x . gm ∈ h . S
0 otherwise,

as elements in x . C commute with x . gm.
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Let η be the character of W ∈ Rep(S), and let χ be the character of
V := Indx.Ch.S∩x.C Resh.Sh.S∩x.C(h . η). Then

Tr(θmGx.g(V )) = [G : x . C]χ(x . gm)

=

{
[G : (h . S) ∩ (x . C)]η(h−1x . gm) if x . gm ∈ h . S
0 otherwise.

By the formula for K(Fd(W )) obtained in the previous section, this
finally implies (using |(h . S) ∩ (x . CG(g))| = |S ∩ (h−1x . CG(g)| =
|S ∩ CG(h−1x . g)|)

νm(Fd(W )) =
∑
g∈C
x∈Xg

h∈Hd
x.g∈hdH
x.gm∈h.S

1

|S ∩ CG(h−1x . g)|
η(h−1x . gm).(4.1)

Surely this sum is not pleasant to work with; it involves summing over
all conjugacy classes of the group and all representatives of certain
double cosets, as well as over the coset representatives in Hd, albeit
that last sum involves either no summand (for many combinations of
g and x we might have x . g 6∈ HdH), or just one summand (the
representative of the unique right coset containing x . g).

We shall process it further using the observation

(4.2) HdH =
⊔
g∈C
x∈Xg

x.g∈HdH

H . (x . g) =
⊔
g∈C
x∈Xg

h∈Hd
x.g∈hdH

H . (h−1x . g)

For the first equality, one has to check when x.g and y.g, for x, y ∈ G,
are in the same orbit of the action of H on G by conjugation:

∃h ∈ H : h . (x . g) = y . g ⇔ ∃h ∈ H : hxgx−1h−1 = ygy−1

⇔ ∃h ∈ H : y−1hx ∈ CG(g)⇔ x ∈ HyCG(g),

while the second is an obvious reparametrization.
Thus, the set

(4.3) Rd = {h−1x . g|g ∈ C, x ∈ Xg, h ∈ Hd, x . g ∈ hdH}

is a set of representatives of the orbits of the action of H on HdH by
conjugation. Moreover, Rd ⊂ dH. Thus, Rd is a set of representatives
of the orbits of the action of S on dH by conjugation. We have very
nearly proved the main result of the paper:
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Theorem 4.1. Let G be a finite group, H ⊂ G a subgroup, d ∈ G,
S = StabH(dH), W ∈ Rep(S) with character η, and Fd(W ) the object
of GHMH corresponding to W . Then

(4.4) νm(Fd(W )) =
1

|S|
∑
r∈dH
rm∈S

η(rm) =
1

|S|
∑
h∈H

(dh)m∈S

η((dh)m).

Proof. Substituting eq. (4.3) in the indicator formula eq. (4.1) yields

(4.5) νm(Fd(W )) =
∑
r∈Rd
rm∈S

1

|S ∩ CG(r)|
η(rm).

But for s ∈ S we have (s . r)m ∈ S ⇔ rm ∈ S, and η((s . r)m) = η(rm)
whenever rm ∈ S. Since S∩CG(r) is the stabilizer of r under the adjoint
action of S, the first equality in (4.4) follows. The second equality is a
trivial reparametrization. �

In the following we keep the notations of theorem 4.1.

Remark 4.2. Note that for r ∈ dH we have rm ∈ S ⇔ rm ∈ H.
Thus we could modify the conditions in the sums (4.4) and subsequent
similar sums, but in the examples that we treated it seemed easier to
check whether an element is in S than to check whether it is in H.

Remark 4.3. The elements

(4.6) µm(d) :=
1

|S|
∑
r∈dH
rm∈S

rm =
1

|S|
∑
h∈H

(dh)m∈S

(dh)m ∈ CS

for m ∈ N are central in the group algebra CS, and νm(Fd(W )) =
η(µm(d)).

Remark 4.4. If d ∈ CG(H), then S = H, and for h ∈ H we have
(dh)m = dmhm ∈ H if and only if dm ∈ H, so that

(4.7) µm(d) =

{
dm 1
|H|
∑

h∈H h
m if dm ∈ H

0 otherwise,

and therefore, since dm ∈ H is in the center of H:

(4.8) νm(Fd(W )) =

{
η(dm)
η(1)

νm(W ) if dm ∈ H
0 otherwise.

The most obvious case of this is when d = 1; the image of F1 is the
monoidal subcategory H

HMH ⊂ G
HMH , which is monoidally equivalent

to Rep(H). The formula (4.8) can also be used to easily obtain exam-
ples where the higher indicators are not real: The cyclic group G of
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order 9, its generator d, its subgroup H of order 3 and a nontrivial irre-
ducible character of the latter will do to obtain ν3(Fd(W )) a nontrivial
third root of unity.

Lemma 4.5. Let y ∈ S. Then

(4.9)
∑

χ∈Irr(S)

νm(Fd(χ))χ(y) = |{h ∈ H|(dh)m = y}|.

In fact the function ζm(y) = |{h ∈ H|(dh)m = y}| is easily seen to
be a class function on S, so one can verify (4.9) by taking its scalar
product with an irreducible character η. The left hand side gives the
m-th indicator by the orthogonality relations, the right hand side by
(4.4).

Remark 4.6. Assume that H ⊂ G is part of an exact factorization, i.
e. there exists a subgroup L ⊂ G such that LH = G and L∩G = {1}.
As pointed out in [16], the category G

HMH is then equivalent to the
category of modules over a bismash product Hopf algebra CL#CH.
Thus, our results comprise a method to calculate indicators for bismash
product Hopf algebras (of which the double below is a special case).

Example 4.7. Let Γ be a finite group, G = Γ × Γ, and H = ∆(Γ),
where ∆: Γ→ Γ× Γ is the diagonal embedding. It is well known that
the category G

HMH
∼= Γ

ΓMΓ
Γ is equivalent to the module category of the

Drinfeld double of Γ (in fact this is a special case of [17]).
LetG be a cross section of the conjugacy classes of Γ. Then {(γ, 1)|γ ∈

G} is a cross section of the double cosets of H in G. Let d = (γ, 1).
Then S = StabH(dH) = ∆(CΓ(γ)). Let h = ∆(θ) ∈ H and m ∈ N.
Then (dh)m = (γθ, θ)m = ((γθ)m, θm), and thus (dh)m ∈ S if and only
if (γθ)m = θm. Thus our indicator formula yields

(4.10) νm(Fd(W )) =
1

|CΓ(γ)|
∑
θ∈Γ

(γθ)m=θm

η(θm).

This formula was obtained in [7], see also [5], where the corresponding
special case of (4.9) can be found. Note that we can replace η by η
since the indicators in this case are known to be real.

In the proof of theorem 4.1 we have obtained the simple looking
indicator formula (4.4) via the more complicated formula (4.5). But in
fact the latter is, in some respects, better than the former: It involves
a sum over less terms, namely orbits of the adjoint action of S instead
of individual elements of dH. Of course for this simplification we could
have taken any section of the orbits on dH instead of Rd. But in fact
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we can also pass to orbits over a group different from S; also, it may
be convenient to take orbits in H of the action on H corresponding to
the adjoint action on dH:

Proposition 4.8. Continuing in the notations of theorem 4.1, set E =
CG(d) ∩ SCG(S) ∩ NG(H). Then SE = ES is a subgroup of G. Let
S ′ ⊂ SE be a subgroup, and let R′d be a section of the orbits of dH
under the adjoint action of S ′ on dH. Then

(4.11) νm(Fd(W )) =
1

|S|
∑
r∈R′d
rm∈S

|S ′|
|S ′ ∩ CG(r)|

η(rm).

Alternatively, let S ′ act on H by the “twisted conjugation” defined by
s.̃h = (d−1.s)hs−1. Let T′d be a system of representatives of the orbits.
Then

(4.12) νm(Fd(W )) =
1

|S|
∑
h∈T′d

(dh)m∈S

|S ′|
|S ′ ∩ CG(dh)|

η((dh)m).

Proof. Let x ∈ E and u ∈ S = H ∩ (d . H). Then x . u = (x . H) ∩
(xd . H) = H . d . H since x . H and xd = dx by hypothesis. Thus
E normalizes S, and SE = ES is a subgroup of G. Now let x ∈ E
and h ∈ H. Since x ∈ SCG(S), we have (dh)m ∈ S if and only if
x . (dh)m ∈ S; in fact these two elements are then conjugate in S. The
condition x ∈ CG(d) implies x . (dh)m = (d(x . h))m, and x ∈ NG(H)
implies x . h ∈ H. Thus the action of S ′ on dH is well defined, and
the condition rm ∈ S is invariant along the orbits as well as the values
η(rm) along those orbits where rm ∈ S. This implies (4.11), since
S ′ ∩ CG(r) is the stabilizer of r. Since s . (dh) = d(s.̃h) for s ∈ S and
h ∈ H, we obtain (4.12) by a simple reparametrization. �

Remark 4.9. The previous result is perhaps the most useful if S ′ ⊂
CG(d), so that the twisted adjoint action coincides with the adjoint
action. At any rate it allows to replace H by a set of orbit representa-
tives before passing to the nastier part of the calculations involved in
applying the indicator formula to concrete examples.

To set notations for subsequent calculations, let G be the set of orbits
of G under the adjoint action of S ′, and S the image of S in G. We do
not distinguish notationally elements of G from those of G. We also
let H̃ be the set of orbits of the twisted adjoint action of S ′ on H, and
Q(d) :=

∑
h∈H h ∈ CH̃. Set

(4.13) T (d) :=
∑
h∈T′d

[S ′ : S ′ ∩ CG(dh)]dh = dQ(d) ∈ CG.
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Let CG 3 x 7→ x[m] ∈ CG be the linear map induced by taking m-th
powers of group elements. Let π : CG → CS be the linear projection
annihilating G \ S. Then

νm(Fd(W )) = η(µm(d)) with µm(d) =
1

|S|
π(T (d)[m]).(4.14)

Of course µm(d) is just the image of µm(d) in CS.

5. Example calculations

Consider the symmetric group Sn and the subgroup Sm ⊂ Sn for
m < n. For d ∈ Sn the stabilizer StabSm(dSn) = Sm ∩ d . Sm con-
sists of those permutations σ ∈ Sm for which d−1 . σ ∈ Sm. For
d−1 . σ to fix every element greater than m it is necessary and suf-
ficient that σ fix every element k with d−1(k) 6∈ {1, . . . ,m}. Thus
StabSm(dSm) = S{1,...,m}∩{d(1),...,d(m)} is a symmetric group. We have
seen that in general higher indicators for the objects of GHMH are non-
negative rational linear combinations of character values of the sta-
bilizers StabH dH. Moreover, higher indicators for any pivotal fusion
category are cyclotomic integers. Thus

Proposition 5.1. Let m < n. Then all values of the higher Frobenius-
Schur indicators for the objects of Sn

Sm
MSm

are integers.

The following example shows that this can fail if we embed Sm into
Sn in a different fashion.

Example 5.2. Consider

G = S9 ⊃ H = {σ ∈ S9|i ≡ j(3)⇒ σ(i) ≡ σ(j)(3)},
so H is the subgroup of those permutations in S9 that preserve conju-
gacy modulo 3. Thus H ∼= S3 is generated by t = (123)(456)(789) and
s = (12)(45)(78).

The element d = (147258369) ∈ S9 satisfies d3 = t, so in particular
d−1 . t ∈ H. On the other hand d−1 . s = (12)(47)(79), so d−1 . s 6∈ H
because 1 ≡ 4(3) while 1 6≡ 7(3). It follows that S = StabH(dH) = 〈t〉.

To compute µ3(d), observe d3 = (dt)3 = (dt2)3 = t. The computation
ds = (1557369) and (ds)3 = (13)(56)(79) 6∈ S shows that (dh)3 6∈ S for
h ∈ H \ {1, t, t2}, since such h are conjugate to s by powers of t, which
commute with d. Thus µ3(d) = t.

In particular ν3(Fd(η)) = ζ−1 is not real when η(t) = ζ is a nontrivial
third root of unity.

We will now compute some of the indicator values for the canonically
embedded subgroups Sn−2 ⊂ Sn (as we shall see, this contains in a sense
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the case Sn−1 ⊂ Sn, or rather Sn−2 ⊂ Sn−1). We note already that all
the indicator values we will find are nonnegative.

For n ≥ 4, it is easy to check that Sn−2 has the following seven
double cosets in Sn:

{σ ∈ Sn|σ(n− 1) = n− 1, σ(n) = n)} = Sn−1

{σ ∈ Sn|σ(n− 1) 6= n− 1, σ(n) = n)}
{σ ∈ Sn|σ(n− 1) = n− 1, σ(n) 6= n)}
{σ ∈ Sn|σ(n− 1) = n, σ(n) = n− 1)}
{σ ∈ Sn|σ(n− 1) = n, σ(n) 6= n− 1)}
{σ ∈ Sn|σ(n− 1) 6= n, σ(n) = n− 1)}
{σ ∈ Sn|{σ(n− 1), σ(n)} ∩ {n− 1, n} = ∅}.

A convenient set of double coset representatives is d1 = (), d2 = (n −
2, n − 1), d3 = (n − 2, n), d4 = (n − 1, n), d5 = (n − 2, n − 1, n),
d6 = (n− 2, n, n− 1), d7 = (n− 3, n− 1)(n− 2, n).

Note that d2 and d3 are conjugate by (n − 1, n). The same holds
for d5 and d6. We have StabSn−2(d2Sn−2) = StabSn−2(d5Sn−2) = Sn−3,
StabSn−2(d7Sn−2) = Sn−4, and StabSn−2(d4Sn−2) = Sn−2.

Note that every di commutes with the elements in StabSn−2(diSn−2);
this is particular to our choice of representatives. It implies that the
twisted conjugation action of the stabilizers on the group Sn−2 from
proposition 4.8 is the ordinary adjoint action.

Note further that d4 commutes with the elements of Sn−2. By re-
mark 4.4 it follows that

(5.1) νm(F(n−1,n)(W )) =

{
νm(W ) if m is even,
0 if m is odd,

for any W ∈ Rep(Sn−2), while νm(F()(W )) = νm(W ).
Note also that d2 ∈ Sn−1. Thus, the indicators for objects in Fd2(Rep(Sn−2))

can also be viewed as indicators in the subcategory Sn−1

Sn−2
MSn−2

. The
subgroup Sn−2 ⊂ Sn−1 is part of an exact factorization, Sn−1 = Cn−1 ·
Sn−2, where Cn−1 denotes the cyclic group generated by the (n−1)-cycle
(1, 2, . . . , n − 1). As remarked already, these indicators are indicators
for modules over a bismash product Hopf algebra CCn−2#CSn−1. Ob-
serve that the exact factorization suggests a different choice of coset
representative, namely the (n − 1)-cycle instead of d2. We have the
feeling that d2 is the better choice since the (n − 1)-cycle does not
commute with elements in the corresponding stabilizer.

Since the images of Fd2 and Fd3 are mapped to each other by an au-
toequivalence, as well as the images of Fd5 and Fd6 , we can concentrate
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on the indicators of the objects in the images of Fdi for i = 2, 5, 7. We
will treat some of them below for small values of n.

5.1. S2 ⊂ S4. Consider H = 〈(1 2)〉 ⊂ G = S4. We have the following
double coset representatives, with their right cosets and double cosets:

i di diH \ {di} HdiH \ diH StabH(diH)
2 () (1 2) H
1 (2 3) (1 2 3) (1 3), (1 3 2) {()}
3 (2 4) (1 2 4) (1 4), (1 4 2) {()}
4 (3 4) (1 2)(3 4) H
5 (2 3 4) (1 2 3 4) (1 3 4), (1 3 4 2) {()}
6 (2 4 3) (1 2 4 3) (1 4 3), (1 4 3 2) {()}
7 (2 3)(1 4) (1 4 2 3) (1 4 2 3), (1 3 2 4) {()}

We proceed to list the sequences of the higher Frobenius-Schur indica-
tors for all the simple objects of GHMH in the images of the functors
Fdi . These sequences are periodic and we list them for one complete
period:

For d1, they are the sequences of the higher Frobenius-Schur indica-
tors of the representations of H, namely (1, . . . ) with period one for the
trivial, and (1, 0, . . . ) with period two for the nontrivial representation.

In all other cases, the only powers of the elements of diH that lie
in the stabilizer StabH(diH) are identity elements. (This requires only
a glance for d4, as the stabilizer itself is trivial in the other cases.)
Thus (regardless of the choice of representation also in the d4 case),
the indicator νm counts how many of the two m-th powers of the two
elements of diH are trivial; the count is then divided by two in the d4

case. Thus the indicator sequences, up to a full period, are:

(νm(Fdi(W )))m =


(0, 1, 1, 1, 0, 2, . . . ) for i = 2, 3

(0, 1, . . . ) for i = 4

(0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 2, . . . ) for i = 5, 6

(0, 1, 0, 2, . . . ) for i = 7.

(Note that the case d4 was already treated above using remark 4.4.)
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5.2. S3 ⊂ S5. In this case we have the right cosets

i di diS3 \ {di}
3 () (12), (13), (23), (123), (132)
2 (34) (12)(34), (143), (243), (1243), (1432)
1 conjugate preceding row by (45)
4 (45) (12)(45), (13)(45), (23)(45), (123)(45), (132)(45)
5 (345) (12)(345)453), (2453), (12453), (14532)
6 conjugate preceding line by (45)
7 (2435) (14352), (15243), (25)(34), (143)(25), (152)(34)

We have

StabS3(diS3) =


S3 for i = 1, 4

S2 = 〈(1 2)〉 for i = 2, 3, 5, 6

{()} for i = 7.

As indicated above, we will only treat the indicators for d2, d5 and
d7.

One sees that for i = 2 the only possibility for a power of an element
of diS3 to be in StabS3(diS3) is if that power is trivial. The same
is of course true for i = 7. So the m-th indicators for the simple
objects in the images of Fdi for i = 2, 7 do not “see” the representations
of StabS3(diS3), but only count the number of elements whose orders
divide m; the count has to be divided by 2 if i = 2. We have

νm(Fd2(W )) =


0 when (m, 12) = 1

1 when (m, 12) = 2, 3

2 when (m, 12) = 4, 6

3 when (m, 12) = 12.

νm(Fd7(W )) =



0 when (m, 60) = 1, 3

1 when (m, 60) = 2

2 when (m, 60) = 4, 5, 15

3 when (m, 60) = 6, 10

4 when (m, 60) = 12, 20

5 when (m, 60) = 30

6 when (m, 60) = 60.

Finally d5S3 contains one element, (1 2)(3 4 5), whose third power
is in StabS3(d5S3) \ {()}. Powers of the other elements are only in the
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stabilizer when they are trivial. Thus we obtain

µm(d5) = µm(d6) =



0 when (m, 60) = 1, 2
1
2
(() + (1 2)) when (m, 60) = 3

() when (m, 60) = 4, 5, 6, 10

2() when (m, 60) = 12, 20, 30
1
2
(3() + (1 2)) when (m, 60) = 15

3() when (m, 60) = 60

For the trivial representation W0 of 〈(1 2)〉 this yields

νm(Fd5(W0)) = νm(Fd6(W0) =


0 when (m, 60) = 1, 2

1 when (m, 60) = 3, 4, 5, 6, 10

2 when (m, 60) = 12, 15, 20, 30

3 when (m, 60) = 60.

For the nontrivial irreducible representation W1 of 〈(1 2)〉 we obtain

νm(Fd5(W1)) = νm(Fd6(W1) =


0 when (m, 60) = 1, 2, 3

1 when (m, 60) = 4, 5, 6, 10, 15

2 when (m, 60) = 12, 20, 30

3 when (m, 60) = 60.

5.3. S4 ⊂ S6. Since |S4| = 24, it seems worth reducing the size of cal-
culations in this case by considering orbits of S4 as outlined in propo-
sition 4.8. We will use S ′ = StabS4(diS4).

For i = 2, 5 the stabilizer is S3. The orbits of S4 under the adjoint
action of S3 are obtained by subdividing the well-known conjugacy
classes of S4 according to the placement of the letter 4 in the respective
cycle structure. Trusting details to the reader, we state:

Q(di) =() + 3(12) + 3(14)

+ 2(123) + 6(124)

+ 3(12)(34)

+ 6(1234).

From this we obtain

T ((45)) = (45)Q((45)) =(45) + 3(12)(45) + 3(154)

+ 2(123)(45) + 6(1254)

+ 3(12)(354)

+ 6(12354)
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and

T ((456)) = (456)Q((456)) =(456) + 3(12)(456) + 3(1564)

+ 2(123)(456) + 6(12564)

+ 3(12)(3564)

+ 6(123564).

Thus (omitting the neutral element and writing 3 := 3() ∈ CS etc.)

µ2((45)) =
1

6
(1 + 3 + 2(123)) =

1

3
(2 + (123)),

µ3((45)) =
1

6
(3 + 3(12)) =

1

2
(1 + (12)),

µ4((45)) =
1

6
(1 + 3 + 2(123) + 6) =

1

3
(5 + (123)),

µ5((45)) = 1,

µ6((45)) =
1

6
(1 + 3 + 3 + 2 + 3) = 2

µ10((45)) =
1

6
(1 + 3 + 2(123) + 6) =

1

3
(5 + (123)) = µ4((45)),

µ12((45)) =
1

6
(1 + 3 + 3 + 2 + 6 + 3) = 3,

µ15((45)) =
1

6
(3 + 3(12) + 6) =

1

2
(3 + (12)),

µ30((45)) =
1

6
(1 + 3 + 3 + 2 + 3 + 6) = 3 = µ12((45))

µ20((45)) =
1

6
(1 + 3 + 2(123) + 6 + 6) =

1

3
(8 + (123))µ60((45)) = 4, µ2((456)) = 0,

µ3((456)) =
1

6
(1 + 3(12) + 2) =

1

2
(1 + (12)),

µ4((456)) =
1

6
(3 + 3) = 1,

µ5((456)) = 1,

µ6((456)) =
1

6
(1 + 3 + 2 + 6) = 2,

µ10((456)) = 1,

µ12((456)) =
1

6
(1 + 3 + 3 + 2 + 3 + 6) = 3,

µ15((456)) =
1

6
(1 + 3(12) + 2 + 6) =

1

2
(3 + (12)),
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µ20((456)) =
1

6
(3 + 6 + 3) = 2

µ30((456)) =
1

6
(1 + 3 + 2 + 6 + 6) = 3,

µ60((456)) = 4.

For d7 the calculations are (even) more tedious; we now need the
S2-orbits of S4, that is, the subdivision of the conjugacy classes of S4

according to the placement of the letters 3, 4 in the cycle structure.
Thus

Q((35)(46)) =()

+ (12) + 2(13) + 2(14) + (34)

+ 2(123) + 2(124) + 2(134) + 2(143)

+ (12)(34) + 2(13)(24)

+ 2(1234) + 2(1243) + 2(1324)

and

T ((35)(46)) =(35)(46)

+ (12)(35)(46) + 2(153)(46) + 2(164)(35) + (3645)

+ 2(1253)(46) + 2(1264)(35) + 2(15364) + 2(16453)

+ (12)(3645) + 2(153)(264)

+ 2(125364) + 2(126453) + 2(153264),

giving

µ2((35)(46)) = µ3((35)(46)) = 1,

µ4((35)(46)) = 4,

µ5((35)(46)) = 2,

µ6((35)(46)) = 7,

µ10((35)(46)) = 3,

µ12((35)(46)) = 10,

µ15((35)(46)) = 3,

µ20((35)(46)) = 6,

µ30((35)(46)) = 9,

µ60((35)(46)) = 12.

In particular, the indicators of the two simples in the image of F(35)(46)

are identical, while for the other cases we have to distinguish between
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the three irreducible representations of S3, to wit the trivial represen-
tation W0, the sign representation W1 and the two-dimensional irre-
ducible W2. We obtain:

object νm with m =
di Wj 2 3 4 5 6 10 12 15 20 30 60

(45)
W0 1 1 2 1 2 2 3 2 3 3 4
W1 1 0 2 1 2 2 3 1 3 3 4
W2 1 1 3 2 4 3 6 3 5 6 8

(456)
W0 0 1 1 1 2 1 3 2 2 3 4
W1 0 0 1 1 2 1 3 1 2 3 4
W2 0 1 2 2 4 2 6 3 4 6 8

(35)(46) any 1 1 4 2 7 3 10 3 6 9 12

5.4. S5 ⊂ S7. If we want to deal with the representations associated
to d7 = (46)(57) as in the preceding example, we calculate with a sum
Q((46)(57)) with as many terms as there are orbits in S5 of the adjoint
action of S3. One can check that there are 28 orbits. But we can reduce
the task considerably (if not quite by half) by extending the stabilizer
to a larger group S ′ as indicated in proposition 4.8. As the element
(45)(67) commutes with d7 and StabS5(d7S5), and normalizes S5, we
can choose S ′ = S3 · 〈(45)(67)〉. Thus we get

Q((46)(57)) =() + 3(12) + 6(14) + (45)

+ 2(123) + 12(124) + 6(145)

+ 6(12)(34) + 3(12)(45) + 6(14)(25)

+ 12(1234) + 12(1245) + 6(1425)

+ 6(12)(345) + 12(14)(235) + 2(45)(123)

+ 12(12345) + 12(12435)

with “only” 18 terms. We calculate

T ((46)(57)) =(46)(57) + 3(12)(46)(57) + 6(164)(57) + (4756)

+ 2(123)(46)(57) + 12(1264)(57) + 6(16475)

+ 6(12)(364)(57) + 3(12)(4756) + 6(164)(275)

+ 12(12364)(57) + 12(126475) + 6(164275)

+ 6(12)(36475) + 12(164)(2375) + 2(4756)(123)

+ 12(1236475) + 12(1264375).

From here, we can go through all the divisors m of the exponent 420 of
S7 to obtain the elements µm and the indicators for the three irreducible
representations of S3. The table fig. 1 calculates µm in two stages,



FROBENIUS-SCHUR INDICATORS FOR GROUP INCLUSIONS 21

giving first an “unsimplified” version of π(T [m]) in an attempt to hint
at how this intermediate result can really be read off quite directly from
the expression for T obtained above.

For good measure, we shall also finish the calculations for d2 = (56)
and d5 = (567). In each case StabS5(diS5) = S4, and

Q(di) =() + 6(12) + 4(15)

+ 8(123) + 12(125)

+ 3(12)(34) + 12(12)(35)

+ 6(1234) + 24(1235)

+ 8(123)(45) + 12(125)(34)

+ 24(12345),

thus

T ((56)) =(56) + 6(12)(56) + 4(165)

+ 8(123)(56) + 12(1265)

+ 3(12)(34)(56) + 12(12)(365)

+ 6(1234)(56) + 24(12365)

+ 8(123)(465) + 12(1265)(34)

+ 24(123465)

and

T ((567)) =(567) + 6(12)(567) + 4(1675)

+ 8(123)(567) + 12(12675)

+ 3(12)(34)(567) + 12(12)(3675)

+ 6(1234)(567) + 24(123675)

+ 8(123)(4675) + 12(12675)(34)

+ 24(1234675).

Thus we obtain the elements µm((56)) and µm((567)) listed in fig. 2.
From the information in fig. 2 and the following character table of S4

() (12) (123) (12)(34) (1234)
η0 1 1 1 1 1
η1 1 −1 1 1 −1
η2 2 0 −1 2 0
η3 3 1 0 −1 −1
η4 3 −1 0 −1 1
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Figure 1. Indicator calculations on Im(F(46)(57)) ⊂ S7
S5
MS5
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Figure 2. µm((56)), µm((567)) ∈ CS4 for indicators in S7
S5
MS5

m µm((56)) µm((567))
2 1

14
(5 + 4(123) + 3(12)(34)) 0

3 1
2
(1 + (12)) 1

8
(3 + 2(12) + (12)(34) + 2(1234))

4 1
3
(5 + (123)) 1

6
(4 + 2(123))

5 1 1
2
(1 + (12))

6 1
4
(11 + (12)(34)) 1

4
(7 + (12)(34))

7 0 1
10 1

12
(17 + 4(123) + 3(12)(34)) 1

12 4 3
14 1

12
(5 + 4(123) + 3(12)(34)) 1

15 1
2
(3 + (12)) 1

8
(7 + 6(12) + (12)(34) + 2(1234))

20 1
3
(8 + (123)) 1

6
(10 + 2(123))

21 1
2
(1 + (12)) 1

8
(11 + 2(12) + (12)(34) + 2(1234))

28 1
6
(10 + 2(123)) 1

3
(5 + (123))

30 1
4
(15 + (12)(34)) 1

4
(11 + (12)(34))

35 1 1
2
(3 + (12))

42 1
4
(11 + (12)(34)) 1

4
(11 + (12)(34)

60 5 4
70 1

12
(17 + 4(123) + 3(12)(34)) 2

84 4 4
105 1

2
(3 + (12)) 1

8
(15 + 6(12) + (12)(34) + 2(1234))

210 1
4
(15 + (12)(34)) 1

4
(15 + (12)(34))

420 5 5

one can then calculate all the indicator values for the simples in the
images of F(56) and F(567); see fig. 3.

The piece of GAP [4] code in fig. 4 can be used to calculate the higher
indicators for objects in G

HMH for any finite group G and subgroup H
available to GAP. It uses the simple but inefficient formula (4.4). More-
over it is written in the most straightforward manner, makes hardly any
attempt to reduce the load of calculations, and blindly repeats the same
steps several times instead. We do not pursue for the moment the quest
to write better code (storing intermediate results such as the elements
µm instead of recalculating them for each representation), nor the task
to make use of the improved formula in proposition 4.8 to speed up
matters. The clumsy code is sufficient to do any of the calculations
done above “by hand” again in seconds. Thus it could have been used
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Figure 3. Indicators on Im(F(56)), Im(F(567)) ⊂ S7
S5
MS5

m νm(F(56)(Wi)) νm(F(567)(Wi))
W0 W1 W2 W3 W4 W0 W1 W2 W3 W4

2 1 1 1 1 1 0 0 0 0 0
3 1 0 1 2 1 1 0 1 1 1
4 2 2 3 5 5 1 1 1 2 2
5 1 1 2 3 3 1 0 1 2 1
6 3 3 6 8 8 2 2 4 5 5
7 0 0 0 0 0 1 1 2 3 3

10 2 2 3 4 4 1 1 2 3 3
12 4 4 8 12 12 3 3 6 9 9
14 1 1 1 1 1 1 1 2 3 3
15 2 1 3 5 4 2 0 2 3 2
20 3 3 5 8 8 2 2 3 5 5
21 1 0 1 2 1 2 1 3 4 4
28 2 2 3 5 5 2 2 3 5 5
30 4 4 8 11 11 3 3 6 8 8
35 1 1 2 3 3 2 1 3 5 4
42 3 3 6 8 8 3 3 6 8 8
60 5 5 10 15 14 4 4 8 12 12
70 2 2 3 4 4 2 2 4 6 6
84 4 4 8 12 12 4 4 8 12 12

105 2 1 3 5 4 3 1 4 6 5
210 4 4 8 11 11 4 4 8 11 11
420 5 5 10 15 15 5 5 10 15 15

to verify these results if the author had had any reason to mistrust
his capability to perform flawless computations. Also, if the original
calculations had contained errors, the GAP code could have been used
to track those down and possibly correct them.

As it stands, the code was also sufficiently efficient to check that
the inclusions S6 ⊂ S8 as well as S7 ⊂ S9 continue to produce only
nonnegative indicator values.
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Figure 4. GAP code to compute indicators in G
HMH

IndicatorForOneRep := function (m,G,H, d , S , eta )
local h , sum ;
sum:=0;
for h in H do

i f (d∗h)^m in S
then sum:=sum+((d∗h)^(−m))^ eta ;

f i ;
od ;
return (sum/ S i z e (S ) ) ;

end ;

Ind icatorsForDoubleCoset := function (G,H, d)
local S , eta , i r r ep s ,m;
S:= I n t e r s e c t i o n (H,H^(d^(−1))) ;
i r r e p s := I r r (S ) ;
for m in Div i s o r s I n t ( Exponent (G) ) do

Print (m, " : " ) ;
for eta in i r r e p s do

Print ( IndicatorForOneRep (m,G,H, d , S , eta ) , " , " ) ;
od ;
Pr int ( "\n" ) ;

od ;
end ;
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