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Abstract. We characterize the module categories of suitably fi-
nite Hopf algebroids (more precisely, ×R-bialgebras in the sense of
Takeuchi [Tak77] that are Hopf and finite in the sense of [Sch00])
as those k-linear abelian monoidal categories that are module cat-
egories of some algebra, and admit dual objects for “sufficiently
many” of their objects.

Then we proceed to show that in many situations the Hopf alge-
broid can be chosen to be self-dual, in a sense to be made precise.
This generalizes a result of Pfeiffer for pivotal fusion categories and
the weak Hopf algebras associated to them [Pfe09].

1. Introduction

The first main result of the present paper is (yet another) variant of
the many results that go back at least to the classical Tannaka-Krein-
duality. To wit: Which mononidal categories are nice enough to admit
the reconstruction of a Hopf algebra (or a structure generalizing some-
what the notion of a Hopf algebra), such that the representations (or
corepresentations) of that algebra describe well the category? Which
monoidal categories are even equivalent to the representation category
of the (co)algebra thus reconstructed?

The generalized Hopf algebras that we will be concerned with in the
present paper are the ×-bialgebras in the sense of Takeuchi [Tak77],
with a Hopf structure in the sense of [Sch00]; we will sometimes refer
to them as bialgebroids or Hopf algebroids. ×-bialgebras can be char-
acterized in terms of monoidal structures on their bimodule categories
[Sch98]. To wit, a ×R-bialgebra H is an R ⊗ Rop-ring such that the
category HM of left H-modules has a monoidal category structure for
which the underlying functor to the category of R-bimodules (with the
tensor product over R) is a monoidal functor.
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When is a ×R-bialgebra H Hopf? Assume that R = k is a field, so
H is an ordinary bialgebra, and assume that H is finite dimensional;
then H is Hopf if and only if the category Hm of finitely generated H-
modules is rigid, that is, finitely generated modules admit dual objects.
In the general case the follwing answer is given in [Sch00]: H is Hopf
if and only if the underlying monoidal functor from H to the monoidal
category of R-bimodules preserves inner hom-functors. While we hope
that this is a satisfactory answer for some purposes, there is a clear
disadvantage: The criterion is not intrinsic to the monoidal category,
but rather involves the underlying functor, while the condition for a
finite dimensional bialgebra over a field only involves the category itself.
However, for the general case the requirement that the category C be
rigid is certainly too strong: Not even the category of finitely generated
modules over a finitely generated projective k-Hopf algebra H over a
commutative ring k is rigid, simply because not every finitely generated
k-module is projective. On the other hand, the category of those H-
modules that are finitely generated projective k-modules is not abelian
(See nonetheless [Hái08] for situations where abelian categories of rigid
comodules of ×-Hopf algebras are treated).

We propose to look instead at categories of modules that are monoidal,
and “sufficiently” rigid; this means one of the following equivalent con-
ditions: Every object is the union of subobjects that are epimorphic
images of rigid objects; Every object is the colimit of rigid objects;
Every finitely generated projective object is rigid; There is a rigid pro-
generator.

With this definition we can easily show that a ×R-bialgebra is Hopf
and finite (in the sense of [Sch00], that is, finitely generated projective
with respect to a certain one of its four R-module structures) if and
only if its module category is sufficiently rigid (proposition 4.1).

Now let C be an abelian monoidal category. When is it the category
of modules of a ×R-bialgebra or ×R-Hopf algebra H? Clearly tensor
products in C need to be right exact. Moreover, it is necessary to find a
monoidal functor to a category of bimodules over an algebra R, which
will correspond to the underlying functor HM→ RMR whose existence
characterizes ×R-bialgebras. The functor we use in the present paper
appears already in the works of Szlachányi [Szl05], Hai Phung [Hái02],
and in a special case Hayashi [Hay99]: Assuming that C is a category
of modules, say over R, a monoidal functor to R-bimodules can be
obtained since tensoring with a fixed object gives rise to a right exact
endofunctor of the category of R-modules, and thus to an R-bimodule.
We show in theorem 4.2 that via this functor every sufficiently rigid
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monoidal category of modules is monoidally equivalent to the category
of modules over a ×-Hopf algebra.

We should haste to admit that we have not checked whether theo-
rem 4.2 can be deduced from the very general techniques in [BLV11].
But we would like to stress that our proof is in fact rather elementary
(assuming some familiarity with Morita theory and the basic character-
ization of ×-Hopf algebras). The reason is that we bypass entirely the
more general questions as to how to reconstruct a ×R-bialgebra from
a monoidal functor to R-bimodules, or when the original category is
equivalent to that of (co-)modules over the reconstructed object. In-
stead, we make use of the special features of the particular functor un-
der consideration, which allows us to resort directly to Morita theory.
We note that in combination with the classical results characterizing
module categories among abelian categories, we arrive at an entirely
intrinsic characterization of the module categories of finite ×-Hopf al-
gebras.

The second main result of the paper generalizes Pfeiffer’s theorem
[Pfe09] on self-duality of pivotal fusion categories. As a special case
of theorem 6.5, any fusion category is the representation category of a
weak Hopf algebra which is self-dual. More generally every finite tensor
category is the representation category of a ×-Hopf algebra which is
self-dual, and we will discuss some other situations where we know that
a self-dual ×-Hopf algebra can be chosen for other tensor categories.
In fact the main difficulty of the proof lies in clarifying what it should
mean for a ×-Hopf algebra to be self-dual. The general theory of
duality for (suitably finite) ×-bialgebras developed in [Sch00] does not
(and cannot) provide a dual ×R-bialgebra for a ×R-bialgebra H, but
rather a skew dual H∨ which is an analog of the dual of the coopposite
of H in the case of ordinary bialgebras. However, for ×-Hopf algebras,
passing to opposites or coopposites is not such an easy matter: The
coopposite of a ×R-bialgebra is a ×Rop-bialgebra, while the opposite of
a ×-bialgebra may not be a ×-bialgebra at all. Thus, to make sense of
self-duality, some manipulations with the base ring R of a ×R-bialgebra
are necessary, and theorem 6.5 gives conditions when a category C is
the module category of a self-dual ×-Hopf algebra.

2. Definitions and Preliminaries

Throughout the paper we will quite freely use the language of monoidal
categories, suppressing the associativity constraints in view of the well-
known coherence results. A general reference is [Kas95].
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If C is a monoidal category, we denote by Crev the category with
reversed order in tensor products (while Cop is the dual category in
which the direction of morphisms is reversed).

We denote the neutral object of a monoidal category C by I. The left
dual of an object X ∈ C, if it exists, is denoted by X∗, it is equipped
by definition with evaluation and coevaluation morphisms

ev : X∗ ⊗X → I and db: I → X ⊗X∗.

An object admitting a left dual will be called left rigid, a category in
which every object admits a left dual is also called left rigid.

A right dual of X (which is the same as a left dual in Crev) will be
denoted ∗X. A right rigid category has every object right rigid, i. e.
admitting a right dual.

We note that in the monoidal category of bimodules over a ring R
(with the tensor product over R) a bimodule is left rigid if and only if
it is finitely generated projective as right R-module.

An object (a category) will be called rigid if it is left and right rigid.
A right inner hom-functor hom(X,—) in C is a right adjoint to the

endofunctor —⊗X, a left inner hom-functor is a right adjoint toX⊗—.
If X is left rigid, then —⊗X∗ is a right inner hom-functor. If a right
inner hom-functor hom(X,—) exists, and the canonical morphism Y ⊗
hom(X,—)→ hom(X, Y ) defined by the adjunction is an isomorphism
for all Y ∈ C, then X is left rigid.

A monoidal functor (F, ξ) : C → D between monoidal categories C
and D consists of a functor, a natural isomorphism ξ : F (X ⊗ Y ) →
F (X) ⊗ F (Y ) (often suppressed) and an isomorphism ξ0 : F (I) → I
(very often suppressed) that satisfy coherence conditions with the as-
sociativity constraints of C and D.

It is well-known that monoidal functors preserve dual objects.
A monoidal category equivalence is a monoidal functor that is a

category equivalence. We will call a monoidal functor C → Drev (or
equivalently Crev → D) a rev-monoidal functor. If C and D are rev-
monoidally equivalent, we will write C

rev∼= D.
Let (F, ξ) : C → D be a monoidal functor. The left weak centralizer

W`(F ) of F is the category whose objects are pairs (X, τ̃) in which X
is an object of D, and τ̃ = τ̃X,V : X ⊗ F (V )→ F (V )⊗X is a natural



HOPF ALGEBROIDS AND SELF-DUALITY 5

transformation making

(1) X ⊗ F (V ⊗W )

τ̃

��

X⊗ξ // X ⊗ F (V )⊗ F (W )

τ̃⊗F (W )

��
F (V )⊗X ⊗ F (W )

F (V )⊗τ̃
��

F (V ⊗W )⊗X
ξ⊗X

// F (V )⊗ F (W )⊗X

commute and satisfying τ̃ = id : X ⊗ F (I)→ F (I)⊗X.
The left weak centralizer is a monoidal category, the tensor product

of X and Y being the tensor product X ⊗ Y in D endowed with

τ̃ =
(
X ⊗ Y ⊗F(V )

X⊗τ̃−→ X ⊗F(V )⊗ Y τ̃⊗Y−→ F(V )⊗X ⊗ Y
)

The right weak centralizerWr(F ) is defined similarly. The (left) cen-
tralizer Z(F ) = Z`(F ) consists of those objects (X, τ̃) in the left weak
centralizer where τ̃ is an isomorphism. It is naturally equivalent to the
right centralizer. Centralizers and weak centralizers were introduced
by Majid [Maj91], who calls the right weak centralizer of F the dual
of the functored category (C, F ).

A left C-category [Par77], or module category over C is a category
D with an action of C, that is, a functor C × D → D with an as-
sociativity constraint coherent with the associativity constraint of C.
Similarly one defines right C-categories and C-C-bicategories. We note
that a tensor functor F : C → D endows D with a natural structure
of right C-category, and that the left centralizer of F is equivalent to
the category of right C-endofunctors of C. In this way Majid’s notion
of duals of functored categories is intimately related to the theory of
duals of fusion categories with respect to module categories, or weak
Morita equivalence [Müg03b; Müg03a; Müg10; ENO05; Ost03]

We fix throughout a commutative base ring k. Algebras, tensor
products, etc. are over k. We will take the liberty to write v⊗w ∈ V⊗W
for a general element of the tensor product of two k-modules (or a
more general tensor product) even when we do not expect the tensor
in question to be simple. For k-algebras A, B we write AM, MB,
AMB for the categories of left A-modules, right B-modules, and A-B-
bimodules. We use Am etc. for the subcategories of finitely generated
modules.

We refer to [Tak77; Böh09; Sch98; Sch00] for the axiomatics of ×R-
bialgebras and ×R-Hopf algebras; we will sometimes also refer to them
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as bialgebroids and Hopf algebroids, in spite of the fact that variants
of the definition have been circulating under these names. The most
awkward feature of the term ×R-bialgebra being that it already con-
tains a choice of “base algebra” R, we will sometimes (as already in the
introduction) use the term ×-bialgebra.

Let R be a k-algebra. Conceptually, a ×R-bialgebra is a k-algebra
H with a k-linear monoidal category structure on the module category
HM, given in such a way that an underlying functor to the category of
R-bimodules (with tensor product over R) is monoidal. More precisely
write R = Rop for the opposite k-algebra, and Re = R ⊗ R for the
enveloping algebra. We can identify RMR = ReM. An equivalent
characterization of the notion of ×R-bialgebra introduced by Takeuchi
[Tak77] is the following [Sch98]: A ×R-bialgebra H is a Re-ring (that
is, an algebra with an algebra map ι : Re → H), and endowed with
a monoidal category structure on the module category HM such that
the functor HM → ReM induced by ι is monoidal. The axiomatics of
a ×R-bialgebra are as follows (writing r for the element r ∈ R viewed
in the opposite algebra R, and suppressing ι): H is equipped with a
comultiplication, a Re-ring homomorphism ∆: H → H ×R H, where

H �H := H ⊗H/k − span{rg ⊗ h− g ⊗ rh|r ∈ R, g, h ∈ H}
H ×R H := {g ⊗ h ∈ H �H|∀r ∈ R : gr ⊗ h = g ⊗ hr},

and the latter is a Re-ring with ι(r ⊗ s) = r ⊗ s We write ∆(h) =
h(1)⊗h(2). Comultiplication is coassociative in the sense that ∆(h(1))⊗
h(2) = h(1) ⊗ ∆(h(2)), where we deliberately omitted discussing where
this equality takes place. The counit is a certain map of Re-rings
ε : H → End(R).

If M,N ∈ HM, then their tensor product M � N in ReM is an H-
module by h(m ⊗ n) = h(1)m ⊗ h(2)n, and R ∈ ReM is an H-module
by h · r = ε(h)(r).

A left H-comodule is a R-R-bimodule M equipped with a struc-
ture map λ : M → H ×R M , written λ(m) = m(−1) ⊗ m(0), such
that ∆(m(−1)) ⊗m(0) = m(−1) ⊗ λ(m), and ε(m(−1))(1)m(0) = m. We
write HM for the category of left H-comodules. The tensor prod-
uct M ⊗

R
N of M,N ∈ HM is again an H-comodule by λ(m ⊗ n) =

m(−1)n(−1) ⊗m(0) ⊗ n(0).
A ×R-bialgebra H is said to be a ×R-Hopf algebra if the map

H ⊗
R

H 3 g ⊗ h 7→ g(1) ⊗ g(2)h ∈ H �H



HOPF ALGEBROIDS AND SELF-DUALITY 7

is an isomorphism. As shown in [Sch00, Thm. 3.5] this is equivalent to
the condition that the underlying functor HM→ ReM preserves inner
hom-functors.

A ×R-bialgebraH is said to be left finite if it is finitely generated pro-
jective as left R-module, and right finite if it is finitely generated pro-
jective as left R-module. If H is left finite, then H∨ := HomR−(H,R)
is a ×R-bialgebra such that

〈ξ|gh〉 = 〈ξ(1)|g〈ξ(2)|h〉〉 = 〈〈ξ(2)|h〉ξ(1)|g〉
〈ξζ|h〉 = 〈ξ|〈ζ|h(1)〉h(2)〉 = 〈ξ〈ζ|h(1)〉|h(2)〉,

where 〈ξ|h〉 = ξ(h) for ξ ∈ H∨ and h ∈ H. Thus, if R = k, H∨ is
the dual k-bialgebra of the coopposite of H. The skew dual H∨ can
be characterized through a certain equivalence of monoidal categories
HM ∼= H∨M.

Finally, note that the opposite of a ×R-bialgebra is generally not a ×-
bialgebra (but see [Böh09] for alternative notions of bialgebroids stable
under taking opposites), while the coopposite Hcop of a ×R-bialgebra
is an Rop-bialgebra; the category HcopM is rev-equivalent to HM.

3. Sufficiently rigid categories

We propose to study a class of abelian monoidal categories which
are not rigid, but have “enough” dualizable objects to correspond well
to (generalized) Hopf algebras among (generalized) bialgebras.

Definition 3.1. Let C be an abelian monoidal category. An object of
C is left rigidly generated if it is the epimorphic image of a left rigid
object of C. An object is left ind-rigid if it is the directed limit of rigid
subobjects. An object is left ind-rigidly generated if it is the directed
limit of rigidly generated subobjects. The category C is left rigidly
generated (resp. ind-rigid, resp. ind-rigidly generated) if every object
of C is.

We note that a left ind-rigidly generated finitely generated object of
an abelian monoidal category is left rigidly generated.

Examples 3.2. Let k be a commutative ring.
(1) The category of k-modules is ind-rigidly generated.
(2) Let R be a k-algebra finitely generated projective as k-module.

Then the category of R-bimodules is ind-rigidly generated.
(3) Assume k is a field and R is a k-algebra. Then the subcategory

of RMR of those bimodules that are finite dimensional over k is
rigidly generated.



8 PETER SCHAUENBURG

(4) Let H be a k-quasi-Hopf algebra finitely generated projective
as k-module. Then HM is a left ind-rigidly generated monoidal
category (which is even easier to see after lemma 3.5.)

(5) Let k be a field, and H a coquasi-Hopf algebra. Then the
category MH of H-comodules is left ind-rigid.

(6) Let k be a field, H a coquasi-Hopf algebra, and A a finite-
dimensional algebra in the category MH . Then the category
AM

H
A of A-bimodules in MH is ind-rigidly generated.

(7) The category of k-modules graded by a group G is ind-rigidly
generated; similarly every ind-rigidly generated category gives
rise to a category of G-graded objects in it, which is also ind-
rigidly generated.

Lemma 3.3. Let C be an abelian monoidal category. If M ∈ C is
the colimit of a diagram of left rigid objects, then M is left rigidly
generated.

Proof. Neglecting the arrows of the diagram, M is the image of the
direct sum of its objects, and thus the directed limit of the images of
direct sums of finite collections of those objects; these finite sums are
left rigid. �

Lemma 3.4. Let C be an abelian monoidal category, X a left rigid
object of C, and Y a direct summand of X. Then Y is left rigid.

In particular any projective and left rigidly generated object, as well
as any finitely generated projective left ind-rigidly generated object is
left rigid.

Proof. Y is the image of some projector p ∈ EndC(X). Take Z to be
the image of p∗ ∈ EndC(X

∗). Then Z is a left dual for Y with the
evaluation and coevaluation morphisms defined by

ev : Z ⊗ Y ι⊗ι−−→ X∗ ⊗X ev−→ I

db: I
db−→ X ⊗X∗ π⊗π−−→ Y ⊗ Z

�

Lemma 3.5. Let C be an abelian monoidal category. Assume that
every object of C is the direct limit of its finitely generated subobjects,
and that every finitely generated object is the epimorphic image of a
finitely generated projective object. Then the following are equivalent:

(1) C is left ind-rigidly generated.
(2) Every object of C is the colimit of a diagram of left rigid objects.
(3) Every finitely generated projective object of C is left rigid.
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Proof. (1)⇒(3) If M is finitely generated, and left ind-rigidly gener-
ated, then M is left rigidly generated, so there is an epimorphism
V → M from a left rigid object V . If M is moreover projective, then
M is a direct summand of V and thus left rigid.

(3)⇒(2) since our assumptions on C imply that every object of C is
the colimit of a diagram of finitely generated projective objects.

(2)⇒(1) was proved in lemma 3.3. �

Note that our assumptions on C are clearly satisfied if C happens
to be a module category. If C is noetherian, the condition that every
finitely generated object is the image of a finitely generated projective
can be rephrased as saying that the (abelian) subcategory of finitely
generated objects has enough projectives.

Definition 3.6. We will say that C is sufficiently left rigid if the as-
sumptions and the equivalent conditions in lemma 3.5 hold.

If the assumptions of lemma 3.5 are not met, then we hesitate to
decide whether “left ind-rigidly generated” or “every object is the colimit
of left rigid ones” makes the better definition of “sufficiently rigid”. The
former is a step-by-step weakening of the condition of rigidity, the latter
seems more categorically natural.

Let C be an abelian monoidal category that contains a left rigid
generator G. Then every finitely generated projective object of G is
the epimorphic image and hence a direct summand of a finite sum of
copies of G, and thus left rigid.

If C has arbitrary colimits, and contains a progenerator (that is,
a small projective generator), then C is equivalent to a category of
modules by a theorem of Gabriel and Mitchell; see [Mit65]. Thus we
obtain the following characterization:

Lemma 3.7. Let C be an abelian monoidal category. The following are
equivalent:

(1) C is cocomplete and has a left rigid progenerator.
(2) C is a sufficiently left rigid category of modules.

Finally, we note how the presence of (sufficiently many) dual objects
affects the (weak) centralizers of a monoidal functor F : C → D: It is
well-known that if V ∈ C is right rigid, and (X, τ̃X,—) ∈ W`(F ), then
τ̃X,V is an isomorphism. In fact the inverse of τ̃V,X is the image of τ̃∗V ,X
under the canonical isomorphism

D(X ⊗F(∗V ),F(∗V )⊗X) ∼= D(F(V )⊗X,X ⊗F(V )).

In particular, if C is right rigid then W`(F ) = Z(F )
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If F is a right exact functor between abelian categories, then one can
conclude that τ̃X,V is an isomorphism for all right ind-rigidly generated
objects. Thus

Lemma 3.8. Let F : C → D be a right exact monoidal functor between
abelian monoidal categories. If C is right ind-rigidly generated, then
the inclusion functor Z(F )→W`(F ) is the identity.

4. Module categories of finite Hopf algebroids

In this section we will give an intrinsic characterization of the module
categories of finite ×-Hopf algebras. We start by characterizing the
finite ×-Hopf algebras among all ×-bialgebras by intrinsic properties
of their module categories.

Proposition 4.1. Let B be a k-algebra, and H a ×B-bialgebra. The
following are equivalent:

(1) H is a ×B-Hopf algebra and finitely generated projective as a
left B-module.

(2) H is a left rigid object in HM.
(3) The category HM is sufficiently left rigid.

If B is noetherian, these are further equivalent to Hm being rigidly
generated.

Proof. It was shown in [Sch00] that HM admits right inner hom-functors
hom(M,N), and that H is ×B-Hopf if and only if the underlying
functor HM → BeM preserves these. Inspecting the proof of [Sch00,
Thm. 3.5] one sees that it suffices already that the underlying functor
preserves the hom-functors hom(H,P ) for P ∈ HM. On the other hand
an object X in a monoidal category with neutral object B admitting
right inner hom-functors is left rigid if and only if all the canonical
morphisms

C : hom(X,P )→ P � hom(X, I)

are isomorphisms. Specialize X = H ∈ HM. If the underlying functor
preserves the inner hom-functors hom(H,P ) andH is finitely generated
projective as a left B-module, then C is an isomorphism because this is
the case in BeM. On the other hand, if H is left rigid in HM then C is
an isomorphism, and hom(H, I) is the left dual of H, hence preserved
by the underlying functor; thus, the instance hom(H,P ) of the hom-
functor is also preserved. This shows the equivalence of (1) and (2).

If HM is ind-rigidly generated, then H is a left rigid object by
Lemma 3.4.

The equivalence of (2) and (3) is already covered in lemma 3.7. �
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As an obvious special case we note that the category HM of modules
over an ordinary k-bialgebra is therefore sufficiently rigid if and only if
H is a Hopf algebra, and finitely generated projective as k-module.

Now we will proceed to show that any sufficiently rigid k-linear
monoidal category of modules is the category of modules over a Hopf
algebroid, while proposition 4.1 assumed that the category is already
given as the module category of a bialgebroid.

Let A be a k-algebra, and denote by C = AM the abelian category of
left A-modules. Suppose that C is a k-linear abelian monoidal category
with respect to some tensor product denoted � which we can safely
assume to be strict. We assume further that � preserves colimits in
each argument, and that C is left ind-rigidly generated.

Note that the regular A-module A ∈ C is a finitely generated projec-
tive object, and thus left rigid by Lemma 3.4.

ByWatts’ theorem, for everyX ∈ C there areA-bimodules L(X), R(X) ∈
AMA such that X � Y = L(X) ⊗

A
Y and Y � X = R(X) ⊗

A
Y for ev-

ery Y ∈ AM, namely L(X) = X � A and R(X) = A � X. Clearly L
and R extend to additive functors L,R : C → AMA. Moreover, L is a
monoidal functor, and R : Crev → AMA is a monoidal functor. Also, L
(and similarly R) is faithful since L(X)⊗

A
I = X � I = X.

Further we can compute

L(X) = L(X)⊗
A
A = X � A = R(A)⊗

A
X

and similarly R(X) = L(A) ⊗
A
X, from which we can conclude that

both R and L are right exact functors. Moreover, L(A), as the image
of a left rigid object under a monoidal functor, is left rigid and thus
finitely generated projective as a right A-module.

Let Λ be some index set and A(Λ) ν−→ I an epimorphism from a
possibly infinite direct sum of copies of A onto I. Applying the right
exact functor L gives an epimorphsim R(ν) : L(A)(Λ) → A, and since A
is finitely generated, a finite subset of n summands suffices to obtain an
epimorphism ν ′ : L(A)n → A. In particular the right A-module L(A)
is a progenerator. Let H = End−A(L(A)). Then the Morita theorems
imply that

C = AM −→ HM

X 7−→ L(A)⊗
A
X = R(X)

is a category equivalence. Put B = Aop. Then we can view R as
a monoidal functor R : C → (AMA)rev ∼= BMB

∼= BeM, which factors
over a functor HM→ BeM that commutes with the underlying functors



12 PETER SCHAUENBURG

to k-modules. We are in the situation of [Sch98, Thm. 5.1, Rem. 5.3]
and can conclude that H admits a ×B-bialgebra structure for which
the equivalence AM→ HM is a monoidal equivalence.

Taking into account proposition 4.1 and lemma 3.7, we have shown:

Theorem 4.2. Let C be a k-linear abelian monoidal category. The
following are equivalent:

(1) (a) C is equivalent, as a k-linear category, to the category of
modules over a k-algebra.

(b) The tensor product of C is right exact in each argument.
(c) C is sufficiently left rigid.

(2) (a) C is cocomplete.
(b) The tensor product of C is right exact in each argument.
(c) C contains a left rigid progenerator.

(3) C ∼= HM, where H is a left finite ×-Hopf algebra.

Remark 4.3. Since the functor R : AM → AMA
∼= A⊗AopM is given by

R(X) = L(A) ⊗
A
X, we know that L(A) is an A ⊗ Aop − A-bimodule,

or an A−A⊗A-bimodule. One right A-module structure comes from
the fact that L is a functor to the category of bimodules, the other is
given by the composition

Aop ∼= EndA−(A)
L→ EndA−A(L(A)).

The same holds for R(A).
Note that moreover L(A) = R(A) ⊗

A
A = R(A) as left A-modules.

The isomorphism is in fact right A ⊗ A-linear as well, but exchanges
the two types of right A-module structures.

5. Weak centralizers and dual bialgebroids

We take a moment to establish the unsurprising fact that the theory
of dual categories in the sense of [Maj91] works well with the notion of
a dual bialgebroid used in [Sch00].

The model case we should keep in mind is the case of a finite dimen-
sional Hopf algebra H. The category HM has a natural underlying
functor to the category of vector spaces. Its left weak centralizer is the
category HM of H-comodules, and inversely the category HM is the
right weak centralizer of the underlying functor from HM. We prove
the same thing for arbitrary ×R-bialgebras and the relevant underlying
functors to categories of bimodules.

Only the second part of the following Proposition will be needed in
the subsequent sections. Both parts should be considered as supplying
an easy standard tool for ×-bialgebra theory; the proofs are entirely
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routine, only complicated, as usual for the theory of ×-bialgebras, by
tedious verifications that all too obvious maps are well defined.

Proposition 5.1. Let H be a ×R-bialgebra. For M ∈ HM and X ∈
HM define

(2) σ = σXN : X ⊗
R
N 3 x⊗ n 7→ x(−1)n⊗ x(0) ∈ N �X.

(1) Identifying the underlying Re-module of an H-module N with
the corresponding R-bimodule makes σ a morphism X ⊗

R
N →

N ⊗
R
X. This defines a monoidal category equivalence

(3) HM 3 N 7→ (N, σ) ∈ Wr

(
HM → RMR

)
.

(2) Identifying the underlying R-bimodule of an H-comodule X with
the corresponding Re-module makes σ a morphism X � N →
N �X. This defines a monoidal category equivalence

(4) HM 3 X 7→ (X, σ) ∈ W` (HM→ ReM) .

Proof. We need to check that σ is well-defined. Abusing notation, this
amounts to the calculation

σ(xr ⊗ n) = (xr)(−1)n⊗ (xr)(0)

= x(−1)rn⊗ x(0)

= σ(x⊗ rn).

Next, we note that

σ(rx⊗ n) = (rx)(−1)n⊗ (rx)(0)

= rx(−1)n⊗ x(0)

= rσ(x⊗ n)

and

σ(x⊗ rn) = x(−1)rn⊗ x(0)

= x(−1)n⊗ x(0)r

= σ(x⊗ n)r.

Note that the last equation means that for a left R-module T we get a
map

σ ⊗ T : (X ⊗
R
N) � T → (N �X)⊗

R
T = N � (X ⊗

R
T ).
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The diagram

(5) X ⊗
R
Y ⊗

R
N

σ //

X⊗σ
��

N � (X ⊗
R
Y )

X ⊗
R

(N � Y ) (X ⊗
R
N) � Y

σ⊗Y
OO

commutes by the calculation

(σ ⊗ Y )(X ⊗ σ)(x⊗ y ⊗ n) = (σ ⊗ Y )(x⊗ y(−1)n⊗ y(0))

= x(−1)y(−1)n⊗ x(0) ⊗ y(0)

= (x⊗ y)(−1)n⊗ (x⊗ y)(0)

= σ(x⊗ y ⊗ n),

and the diagram

(6) X ⊗
R

(M �N)
σ // M �N �X

(X ⊗
R
M) �N

σ⊗N
// (M �X)⊗

R
N M � (X ⊗

R
N)

M⊗σ

OO

commutes by

(M ⊗ σ)(σ ⊗N)(x⊗m⊗ n) = (M ⊗ σ)(x(−1)m⊗ x(0) ⊗ n)

= x(−2)m⊗ x(−1)n⊗ x(0)

= x(−1)(m⊗ n)⊗ x(0)

= σ(x⊗m⊗ n)

These calculations show that the two functors in (1) and (2) are well-
defined and monoidal.

Let us show that the functor in (1) is an equivalence. Thus con-
sider (N, σ) ∈ Wr(

HM → RMR); consider N as an Re-module. This
converts σ to a natural transformation σ : X ⊗

R
N → N � X. Since

H ∈ HM, we obtain

µ =

(
H ⊗

R
N

σ→ N �H N�ε0→ N

)
.

We write µ(`⊗ n) =: `n.
Since δ0 : X → H �X is left H-colinear with(

X
δ0→ H �X ε0�X→ X

)
= idX ,
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we have a commutative diagram

(7) X ⊗
R
N

σ //

δ0

��

N �X

δ0

��
(H �X)⊗

R
N

σ // N �H �X N⊗ε0⊗X // N �X

And since σH�X,N(`⊗ x⊗ n) = σHN(`⊗ n)⊗ x we deduce that

σXN(x⊗ n) = x(−1)n⊗ x(0).

It follows that

`(1)(rn)⊗ `(2) = σHN(`⊗ rn)

= σHN(`⊗ n)r

= `(1)n⊗ `(2)r

= (`(1)r)n⊗ `(2)

and, upon applying N � ε0, that `(rn) = (`r)n. Thus µ factors over
H ⊗

Re
N . By definition µ is left R-inear, but also

(r`)n = (N � ε0)σHN(r`⊗ n)

= (N � ε0)((r`)(1)n⊗ (r`)(2))

= (N � ε)(`(1)n⊗ r`(2))

= ε0(r`(2))(`(1)n)

= rε0(`(2))(`(1)n)

= r(`n)

since
`n = (N � ε0)(`(1)n⊗ `(2)) = ε0(`(2))(`(1)n).

Next, consider the left H-comodule H and the left H-colinear mul-
tiplication map ∇ : H ⊗

R
H → H. Naturality of σ gives a commutative

diagram

(8) H ⊗
R
H ⊗

R
N

H⊗σ //

∇⊗N
��

H ⊗
R
N �H σ⊗H // N �H ⊗

R
H

N⊗∇
��

H ⊗
R
N

σ // N �H
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Thus

(``′)(1)n⊗ (``′)(2) = σ(``′ ⊗ n)

= (N ⊗∇)(σ ⊗H)(H ⊗ σ)(`⊗ `′ ⊗ n)

= (N ⊗∇)(σ ⊗H)(`⊗ `′(1)n⊗ `′(2))

= (N ⊗∇)(`(1)(`
′
(1)n)⊗ `(2) ⊗ `′(2))

= `(1)(`
′
(1)n)⊗ `(2)`

′
(2).

To this we can apply N ⊗ ε0 to obtain

(``′)n = ε0((``′)(2))(``
′)(1)n

= ε0(`(2)`′(2))`(1)(`
′
(1)n)

= ε0(`(2)ε0(`′(2)))`(1)(`
′
(1)n)

= ε0(`(2))`(1)ε0(`′(2))(`
′
(1)n)

= `ε0(`′(2))(`
′
(1)n)

= `(ε0(`′(2))`
′
(1)n)

= `(`′n).

Thus, N is a left H-module, and we have found an inverse image of
(N, σ) under the functor in (1).

To show that the functor in (2) is an equivalence, consider (X, σ) ∈
W`(HM → ReM). Identifying X ∈ ReM with the corresponding R-
bimodule translates σ to a map σ : X ⊗

R
N → N �X. We define

δ0 =

(
X → X ⊗

R
H

σ→ H �X
)
,

where the first map sends x to x ⊗ 1. Write δ0(x) = x(−1) ⊗ x(0). For
n ∈ N ∈ HM, we use naturality of σ with respect to the H-module
map n̂ : H → N sending 1 to n to calculate

σXN(x⊗ n) = σXN(X ⊗ n̂)(x⊗ 1)

= (n̂⊗X)σXH(x⊗ 1)

= (n̂⊗X)(x(−1) ⊗ x(0))

= x(−1)n⊗ x(0).

In particular,

x(−1) ⊗ x(0)r = σ(x⊗ 1)r = σ(x⊗ r · 1) = x(−1)r ⊗ x(0)

so that δ0 takes values in H ×R X. To prove that δ0 defines an H-
comodule structure, we use the fact that comultiplication of H is an
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H-module map ∆0 : H → H � H with respect to which σ is natural.
This yields the diagram

(9) X ⊗
R
H

σ //

X⊗∆0

��

H �X

∆0⊗X
��

X ⊗
R
H �H σ⊗H // H �X ⊗

R
H

H⊗σ // H �H �X

and chasing the element x⊗ 1 around this diagram yields

∆0(x(−1))⊗ x(0) = (∆0 ⊗X)σ(x⊗ 1)

= (H ⊗ σ)(σ ⊗H)(X ⊗∆0)(x⊗ 1)

= x(−1) ⊗ x(0)(−1) ⊗ x(0)(0).

We skip the details remaining to show that X becomes an H-comodule
and we have thus constructed the inverse functor to the claimed equiv-
alence in (2). �

6. Self-duality

We will continue to consider the ×-Hopf algebra associated in sec-
tion 4 to a sufficiently left rigid abelian monoidal category. We continue
in the notations used in that section, but now we assume in addition
that the category C is also sufficiently right rigid. We begin by proving
once again the implication (1)⇒(3) of theorem 4.2. Of course this is
logically not necessary, but seems worthwhile since the proof avoids an
awkward technical step.

So, we consider the monoidal functor L : C → AMA, and use the fact
that L(X) ∼= R(A) ⊗

A
X. Since A is right rigid, its image under the

rev-monoidal functor R is left rigid in AMA, and thus finitely generated
projective as right A-module. Exactly as in section 4 for L(A) we can
prove that R(A) admits an epimorphism R(A)n → A of A-bimodules,
and thus R(A) is a right A-progenerator. By the Morita theorems, L
factors over a category equivalence

C = AM −→ HM

X 7−→ R(A)⊗
A
X = L(X)

with, this time, H := End−A(R(A)). Thus HM is a monoidal category,
and admits an underlying functor HM→ AeM that commutes with the
underlying functors to the category of k-modules. By [Sch98, Thm. 5.1,
Rem. 5.3] we conclude that H admits a ×A-bialgebra structure for
which the equivalence AM→ HM is a monoidal equivalence.
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So far we have used two-sided sufficient rigidity to slightly simplify
the proof in section 4, avoiding a last awkward passage to opposite
rings. Now we will exploit it further to obtain a sort of self-duality.

Proposition 6.1. Let C be a sufficiently rigid cocomplete k-linear
abelian monoidal category with right exact tensor products and a pro-
generator.

Then there is a ×B-Hopf algebra H, finitely generated projective as
left B-module as well as left R-module, such that

C ∼= HM
rev∼= HM ∼= H∨M, HcopM ∼= H∨M, and HM ∼= (Hcop)∨M

as monoidal categories.

Proof. By and large, the proof exploits the fact that C is a C-bimodule
category, and C is equivalent to the category of k-linear right exact
right C-endofunctors, as well as rev-equivalent to the category of k-
linear right exact left C-endofunctors of C.

More concretely, the isomorphisms

L(X)⊗
A
R(Y )⊗

A
Z ∼= L(X)⊗

A
(Z � Y ) ∼= X � (Z � Y ) ∼=

∼= (X � Z) � Y ∼= R(Y )⊗
A

(X � Z) ∼= R(Y )⊗
A
L(X)⊗

A
Z

for X, Y, Z ∈ C induce isomorphisms

τXY : R(X)⊗
A
L(Y )→ L(Y )⊗

A
R(X)

that define monoidal functors R̂ : Crev → Z(L) and L̂ : C → Z(R).
These two functors are category equivalences: For example, let (M,σ) ∈
Z(L). Then σ makes the endofunctor M ⊗

A
— of C commute with the

left action of C on itself:

M ⊗
A

(Y � Z) = M ⊗
A
L(Y )⊗

A
Z

σ→ L(Y )⊗
A
M ⊗

A
Z

= Y � (M ⊗
A
Z).

Therefore, M ⊗
A
Z ∼= Z �X for X := M ⊗

A
I, and we find M ∼= R(X),

in such a way that σ identifies with τ .
Since C is ind-rigidly generated, the centralizers of L and R coincide

with the left or right weak centralizers by lemma 3.8.
Thus, the functor R : Crev → AMA is the left weak centralizer of

L : C → AeM, and by proposition 5.1 we conclude that R is a monoidal
equivalence of Crev with HM.
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By [Sch00, Cor. 5.15], the monoidal category of left H-comodules is
equivalent to the category of left modules over the left dual ×A-Hopf
algebra.

Passing to coopposite ×-bialgebras corresponds to reversing tensor
products in the module category.

For the last equivalence, we can apply the same reasoning replacing
H with Hcop. �

Remark 6.2. In the situation of the preceding proposition, one is tempted
to say that H (or perhaps Hcop) is selfdual, because for ordinary Hopf
algebras H∨ is just the opposite of the dual Hopf algebra, or the dual
of the coopposite. However, Hcop is a ×Aop-bialgebra, so the statement
that Hcop is isomorphic to H∨ has no immediate meaning. We shall
encounter situations below, however, where we can make sense of it.

Definition 6.3. Let H be a ×A-bialgebra.
If θ : A → R is an isomorphism of algebras, then clearly H can be

viewed as a ×R-bialgebra, which we will denote by Hθ.
If K is a ×R-bialgebra, and K ∼= Hθ, as ×R-bialgebras, then we will

say that K and H are isomorphic.
If H is finitely generated projective as left A-module, and Hcop ∼=

H∨, we shall say that H is self-dual.
More generally, assume that A and R are Morita equivalent algebras,

and fix an equivalence Θ: AM → RM (given an isomorphism θ : A →
R one could take Θ = θ−1M.) Then there is a monoidal category
equivalence AMA → RMR, which we denote by Θ again. It determines
a×R-bialgebraHΘ, obtained fromH by “Morita base change” [Sch03b],
such that we have an equivalence of monoidal categories HΘM ∼= HM
that commutes with the underlying functors to the respective categories
of bimodules over the base as in the following diagram:

HΘM //

��

HM

��

ReM //
AeM

We shall say that H is self-dual up to Morita base change if Hcop is
obtained from H∨ by Morita base change.

Remark 6.4. Note that if H is a ×A-bialgebra, then the algebra maps
A→ H and A→ H that make up the structure map A⊗ A→ H are
injective.

Thus, an isomorphism H → K between a ×A-bialgebra H and a ×R-
bialgebraK is the same thing as an isomorphism f : H → K of algebras
such that f(A) = R, f(A) = R, f(a) = f(a), f(h(1)) ⊗ f(h(2)) =
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f(h)(1) ⊗ f(h)(2), and ε(f(h))(f(a)) = f(ε(h)(a)) for all a ∈ A and
h ∈ H.

Theorem 6.5. Let A be a k-algebra, finitely generated projective over
k, such that C = AM is a k-linear abelian monoidal category. Assume
that C is sufficiently rigid. Let C0 ⊂ C be the subcategory of finitely
generated projective objects. Let J be a k-module, and consider the
functor F0 : C0 →MA defined by F0(X) = Homk(

∗X, J).
If there is an isomorphism θ : A → Aop and a natural isomorphism

F0(X) ∼= θX, then C is monoidally equivalent to HM, where H is a
self-dual ×B-Hopf algebra.

If F0 extends to a k-linear category equivalence F : C → MA, then
C is equivalent to the monoidal category of modules over a ×B-Hopf
algebra H which is self-dual up to Morita base change.

Proof. We start with the weaker assumption that F0 extends to F : AM→
MA.

Write D(X) = Homk(X, J) so that F0(X) = D(∗X). If X is a
finitely generated projective, and hence left rigid object of C, we have

D(X � Y ) = Homk(L(X)⊗
A
Y, J)

= Hom−A(L(X),Homk(Y, J))

= Hom−A(L(X), D(Y ))

= D(Y )⊗
A
L(X∗).

and hence

F0(X � Y ) = D(∗(X � Y ))

= D(∗Y � ∗X)

= D(∗X)⊗
A
L(Y )

= F0(X)⊗
A
L(Y ).

Since every object of C is a colimit of finitely generated projective
ones, we can extend this isomorphism to an isomorphism F (X � Y ) ∼=
F (X)⊗

A
L(Y ) defined for arbitrary objects X, Y .

Denoting again F the category equivalence AopMAop → AMA induced
by F , we have thus shown that F ◦ L = Rop, where Rop(X) denotes
R(X), regarded as an Aop-bimodule. Now as L : C → AeM factors over
the equivalence C → HM, the functor F ◦L factors over an equivalence
C → HFM, where H is obtained from H by Morita base change. On the
other hand we know from proposition 6.1 that R : Crev → AeM factors
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over an equivalence Crev → H∨M, which is the same as saying that Rop

factors over an equivalence C → (H∨)copM, whence H is self-dual.
If the category equivalence F is induced by an anti-automorphism

of A, then we can infer that H is self-dual rather than self-dual up to
Morita base change. �

Remark 6.6. If we require analogous hypotheses for the functor F ′0 : C0 →
MA defined by F ′0(X) = Homk(X

∗, J), we arrive at the conclusion that
H can be chosen so that Hcop is self-dual (up to Morita base change).
Corollary 6.7. Let A be a k-quasi-Hopf algebra finitely generated pro-
jective as k-module, whose antipode is bijective (the last condition is
known to be void if A is an ordinary Hopf algebra). Then AM is
monoidally equivalent to the category of modules over a self-dual ×-
Hopf algebra.
Proof. The category AM then satisfies the conditions of theorem 6.5,
with J = k and the map θ given by the antipode. �

Remark 6.8. In the case just treated, the self-dual ×-Hopf algebra can
be described more concretely. For X ∈ AM, the endofunctor X �—
of AM assigns Y ∈ AM to the tensor product X ⊗ Y over k, with the
diagonal module structure. But •X ⊗ •Y ∼= (•X ⊗ •A•) ⊗

A
Y . Thus

L(X) = X ⊗ A, with the diagonal left A-module structure and the
right A-module structure of the right tensor factor. Now by a re-
sult of Hausser and Nill [HN99] the functor L factors over a category
equivalence AM → AM

A
A with the category of Hopf modules, by en-

dowing L(X) = X ⊗ A with the right comodule structure δ(x ⊗ a) =
φ(−1)x⊗φ(−2)a(1)⊗φ(−3)a(2), where φ = φ(−1)⊗φ(−2)⊗φ(−3) ∈ A⊗A⊗A
is the inverse of the coassociator of the quasi-Hopf algebra A. It was
already observed by Hausser and Nill that this allows us to view AM
as the category of modules over a ×A-bialgebra H with coassociative
comultiplication (while A has non-coassociative comultiplication). The
algebra H whose modules are precisely the Hopf modules in AM

A
A is

modelled on the k-module A⊗A⊗A∗; see [Sch03a]. Constructions of
associative algebras whose modules correspond to Hopf modules (with
the same underlying k-module) go back to [CR98].
Corollary 6.9. Assume that k is a field, C is a rigid k-linear monoidal
category, and equivalent to the category of finitely generated A-modules
over a finite-dimensional k-algebra A. Then C is monoidally equivalent
to the category of finitely generated modules over a self-dual ×-Hopf
algebra. This applies in particular if C is a finite tensor category in the
sense of [EO04], or the category of finitely generated modules over a
weak Hopf algebra.
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Proof. We consider C = AM. Then F0 as in theorem 6.5, with J = k,
is defined on all of Am = C, giving an equivalence to the category
of finitely generated right A-modules. Thus, the required extension F
always exists. Moreover, we can replace A by a Morita equivalent basic
algebra, and in this case the required isomorphism θ always exists. �

The following corollary was proved by Pfeiffer [Pfe09] under the ad-
ditional hypothesis that the category in question is spherical.

Corollary 6.10. A fusion category is monoidally equivalent to the cat-
egory of modules over a self-dual weak Hopf algebra.

Proof. The proof of theorem 6.5 provides us with a self-dual ×B-Hopf
algebra whose base R is split semisimple. This is equivalent to a weak
Hopf algebra, and self-duality as a ×B-Hopf algebra clearly implies self-
duality as a weak Hopf algebra (see [Sch03c] for the translation between
the formalisms of ×-Hopf algebras and weak Hopf algebras). �

In the applications of theorem 6.5 so far, the k-module J was always
simply k itself. In the following last version, we finally use a different
choice. Admittedly, its hypotheses are not motivated by any specific
applications beyond those already mentioned.

Corollary 6.11. Let A be an artin k-algebra in the sense of [ARS95],
that is, k is an artinian ring, and A is a k-algebra which is a finitely
generated k-module. Assume that Am is a k-linear abelian monoidal
category in which projective as well as injective objects are rigid, in
such a way that duals of projective (resp. injective) objects are injective
(resp. projective). For example, this is the case if Am is rigid.

Then Am is monoidally equivalent to the category of modules over a
self-dual ×-Hopf algebra.
Proof. Let J be the injective envelope of k; then D defines a duality
between the module categories Am and mA, see [ARS95, sec. II.3]. As
taking duals in the category Am provides a duality between projective
and injective objects by assumption, we see that F0 is an equivalence
between finitely generated projective left A-modules and finitely gen-
erated projective right A-modules, which extends to an equivalence
between all modules. Moreover we can replace A by a Morita equiva-
lent basic algebra, so that the isomorphism θ required in theorem 6.5
exists. �

Guilty Plea 6.12. (1) IfH is obtained by Morita base change from a
Hopf algebroid which is in turn self-dual, then H is self-dual up
to Morita base change. We do not know whether the converse
is true.
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(2) The proof of self-duality up to Morita base change in theo-
rem 6.5 relies on the hypothesis of a Morita equivalence be-
tween an algebra and its opposite, while self-duality requires an
isomorphism between the algebra and its opposite.

Whether the distinction is really essential is related to an
open purely ring-theoretic question [Fir13]: If a ring is Morita
equivalent to its opposite, is it then Morita equivalent to a ring
admitting an anti-automorphism? Since the answer is “yes” in
a large class of examples, and no counterexample is known, the
more general case treated in theorem 6.5 may in fact turn out
not to be more general.

(3) We do not know of any examples of ×B-bialgebras H such that
H is self-dual, but not Hcop. The same ignorance pertains to
self-duality up to Morita base change.
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