$\mathbb{Z} / 2 \mathbb{Z}$-extensions of pointed fusion categories (joint work with J.-M. Vallin)

Leonid Vainerman

University of Caen

Dijon, May 22, 2013

A fusion category \mathcal{C} :

- A tensor category with associativity isomorphisms $\alpha(X, Y, Z):(X \otimes Y) \otimes Z \mapsto X \otimes(Y \otimes Z) \quad(X, Y, Z \in O b(\mathcal{C}))$ satisfying the Pentagon condition :

- A semisimple category with duality $\mathrm{ev}_{X}: X^{*} \otimes X \mapsto \mathbf{1}$ and $\operatorname{coev}_{X}: \mathbf{1} \mapsto X \otimes X^{*}$, finitely many (classes of) simple objects $\left(X_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces:

$$
X_{i} \otimes X_{j}=\underset{k}{\oplus} N_{i j}^{k} X_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=X_{i_{0}}
$$

We suppose that the ground field is \mathbb{C} and $X=\mathbf{1} \otimes X=X \otimes \mathbf{1}$.

Dimensions

Frobenius-Perron dimension of X_{i} - the largest nonnegative eigenvalue of $N_{i j}^{k}$. We have

$$
\begin{gathered}
F P \operatorname{dim}\left(X_{i} \otimes X_{j}\right)=F P \operatorname{dim}\left(X_{i}\right) F P \operatorname{dim}\left(X_{j}\right), \\
F P \operatorname{dim}\left(X_{i} \oplus X_{j}\right)=F P \operatorname{dim}\left(X_{i}\right)+F P \operatorname{dim}\left(X_{j}\right)
\end{gathered}
$$

which gives a homomorphism of the fusion ring of \mathcal{C} to \mathbb{R}. By definition, $F P \operatorname{dim}(\mathcal{C})=\Sigma_{i} F P \operatorname{dim}\left(X_{i}\right)^{2}$.

Proposition ([ENO1], 2005) If $F P \operatorname{dim}(\mathcal{C}) \in \mathbb{N}$, then :

1) \mathcal{C} admits a unique pivotal structure (i.e., a family of isomorphisms $a_{X}: X \mapsto X^{* *}$ such that $\left.a_{X \otimes Y}=a_{X} \otimes a_{Y}\right)$ satisfying $\operatorname{Tr}\left(a_{X}\right)=F P \operatorname{dim}(X)$, where $\operatorname{Tr}\left(a_{X}\right):=e v_{X *}$ $\circ\left(a_{X} \otimes i d_{X^{*}}\right) \circ \operatorname{coev}_{X} \in \operatorname{End}(\mathbf{1}) \cong \mathbb{C}, X, Y \in O b(\mathcal{C})$.
Such categories are called pseudo-unitary, they are automatically spherical, i.e., $\operatorname{Tr}\left(a_{X}\right)=\operatorname{Tr}\left(a_{X *}\right)$.
2) $\operatorname{Tr}\left(a x_{i}\right)=F P \operatorname{dim}\left(X_{i}\right)=\sqrt{N}_{i}$, where $N_{i} \in \mathbb{N}$.

Examples of fusion categories

1) The category of finite dimensional vector spaces (rank 1 fusion category), representation categories of finite groups or finite dimensional semisimple Hopf algebras.
2) $\mathcal{C}=\operatorname{Vec}_{G}^{\omega}$: simple objects are $g, h, k \in G$, fusion rule : $g \otimes h=g h$, duality : $g^{*}=g^{-1}, \alpha(g, h, k)=\omega(g, h, k) / d_{g h k}$, where ω is a 3-cocycle on a finite group G -
Pointed fusion categories.
3) Categories of bimodules coming from the theory of Von Neumann subfactors of finite index and finite depth.

In particular, Yang-Lee fusion category:
$O b(\mathcal{C})=\{\mathbf{1}, X\}, X \otimes X=\mathbf{1} \oplus X$,
so $(F P \operatorname{dim}(X))^{2}=1+F P \operatorname{dim}(X) \Longrightarrow F P \operatorname{dim}(X)=\frac{1+\sqrt{5}}{2}$.

Graded fusion categories :

$\mathcal{C}=\oplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}, \quad \mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a b}, a, b \in \Gamma \quad(\Gamma$ is a finite group $)$.
We want to classify $\mathbb{Z} / 2 \mathbb{Z}$-extensions $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ of $\mathcal{C}_{0}=\operatorname{Vec}_{G}^{\omega}$ Proposition If $\mathcal{C}_{0}=\operatorname{Vec}_{G}^{\omega}$, then :

- G acts transitively on both sides on the set $\operatorname{Irr}\left(\mathcal{C}_{1}\right)=G / A$ of simple objects of \mathcal{C}_{1}, these actions commute and the stabilizer of any simple object is $A \triangleleft G$.
- Fusion rules and duality : for $g, h \in G, M, N \in G / A$, $g \otimes M=g \cdot M, M \otimes g=M \cdot g,(g \cdot M)^{*}=M^{*} \cdot g^{-1}$, $M \otimes N=\underset{M=g \cdot N^{*}}{\oplus} g$, and $\left\{g \in G \mid M=g N^{*}\right\}$ - an A-coset.
Corollary $\operatorname{FPdim}(g)=1, \forall g \in G, F P d i m(M)=\sqrt{\mid} A \mid$, $\forall M \in G / A$, so $F P \operatorname{dim}(\mathcal{C})=2|G|$ and \mathcal{C} is pseudo-unitary.
Example: Tambara-Yamagami categories ([TY], 1998), where $\operatorname{lrr}\left(\mathcal{C}_{1}\right)=\left\{M=M^{*}\right\}$. Then $A=G$ must be abelian and $\omega=1$. They are classified by triples (A, χ, τ), where $\chi: A \times A \rightarrow \mathbb{C}^{\times}$is a symmetric non-degenerate bicharacter on A and $\tau= \pm|A|^{-1 / 2}$.

The structure of graded fusion categories ([ENO2], 2010)
Right \mathcal{C}-module category $\left(\mathcal{M}, \tilde{\mu}^{r}\right)$: a bifunctor $\odot: \mathcal{M} \times \mathcal{C} \longrightarrow \mathcal{M}$ equipped with associativity isomorphisms $\tilde{\mu}^{r}: M \odot(X \otimes Y) \mapsto$ $\mapsto(M \odot X) \odot Y$ satisfying the Pentagon conditions :

$$
\begin{array}{rc}
M \odot((X \otimes Y) \otimes Z)) \xrightarrow{\tilde{\mu}^{r}(M, X \otimes Y, Z)} & (M \odot(X \otimes Y)) \odot Z \\
i d_{M} \odot \alpha(X, Y, Z) \\
M & \\
M \odot(X \otimes(Y \otimes Z)) & \tilde{\mu}^{r}(M, X, Y) \odot i d_{Z} \\
\tilde{\mu}^{r}(M, X, Y \otimes Z) & \downarrow \\
(M \odot X) \odot(Y \otimes Z) \xrightarrow{\downarrow} \xrightarrow{\tilde{\mu}^{r}(M \odot X, Y, Z)} & ((M \odot X) \odot Y) \odot Z
\end{array}
$$

Right module functor $(F, \gamma):\left(\mathcal{M}_{1}, \tilde{\mu}_{1}^{r}\right) \rightarrow\left(\mathcal{M}_{2}, \tilde{\mu}_{2}^{r}\right)$ is a functor $F: \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ equipped with a family of isomorphisms $\gamma(M, X)$:
$F(M \odot X) \rightarrow F(M) \odot X$ satisfying

$$
\begin{array}{cc}
F(M \odot((X \otimes Y)) \xrightarrow{\gamma(M, X \otimes Y)} & F(M) \odot(X \otimes Y)) \\
F\left(\tilde{\mu}_{1}^{r}(M, X, Y)\right) \\
\downarrow & \\
F((M \odot X) \odot Y) & \downarrow \\
\gamma(M \odot X, Y) \\
\downarrow & \tilde{\mu}_{2}^{r}(F(M), X, Y) \\
F(M \odot X) \odot Y \xrightarrow{\gamma(M, X) \odot i d_{Y}} & \\
& (F(M) \odot X) \odot Y
\end{array}
$$

Two right module functors, $\left(F^{1}, \gamma^{1}\right)$ and $\left(F^{2}, \gamma^{2}\right)$, are said to be isomorphic if there is a family of isomorphisms $\eta(M)$: $F^{1}(M) \mapsto F^{2}(M)$ such that

$$
\begin{gathered}
F^{1}(M \odot X) \xrightarrow{\eta(M \odot X)} F^{2}(M \odot X) \\
\gamma^{1}(M, X) \downarrow \\
F^{1}(M) \odot X \xrightarrow{\mid} \xrightarrow{\eta(M) \odot i d_{X}}
\end{gathered} F^{2}(M) \odot X
$$

Bimodule categories

A $(\mathcal{C}, \mathcal{D})$-bimodule category is a module category over $\mathcal{C} \boxtimes \mathcal{D}^{\text {op }}$, where $\mathcal{D}^{o p}$ is the opposite fusion category to \mathcal{D} (i.e., with reversed order of tensor product and inverted associativity isomorphisms) and \boxtimes is Deligne's tensor product of finite abelian linear categories.

Alternatively, a $(\mathcal{C}, \mathcal{D})$-bimodule category, is defined by three structures : right \mathcal{D}-module category as above, a left \mathcal{C}-module category defined by a bifunctor $\odot: \mathcal{C} \times \mathcal{M} \longrightarrow \mathcal{M}$ equipped with associativity isomorphisms $\tilde{\mu}^{\prime}:(X \otimes Y) \odot M \mapsto X \otimes(Y \odot M)$, and also left-right compatibility isomorphisms:

$$
\tilde{\chi}(X, M, Y):(X \odot M) \odot Y \mapsto X \odot(M \odot Y)
$$

satisfying the corresponding pentagon conditions ([Greenough], 2010).

Then one can define bimodule functors and their isomorphisms.

Tensor product of module categories over \mathcal{C}

Let $\left(\mathcal{M}, \tilde{\mu}^{r}\right)$ and $\left(\mathcal{N}, \tilde{\mu}^{\prime}\right)$ be right and left \mathcal{C}-module categories and \mathcal{A} be an abelian category. A bifunctor $F: \mathcal{M} \times \mathcal{N} \rightarrow \mathcal{A}$ is \mathcal{C}-balanced if there is a family of isomorphisms

$$
b_{M, X, N}: F(M \odot X, N) \rightarrow F(M, X \odot N)
$$

satisfying some pentagon condition with respect to $\tilde{\mu}^{r}$ and $\tilde{\mu}^{I}$.
Tensor product $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is an abelian category equipped with a \mathcal{C}-balanced bifunctor $B(\mathcal{M}, \mathcal{N}): \mathcal{M} \times \mathcal{N} \rightarrow \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ satisfying the universal property: for any \mathcal{C}-balanced bifunctor $F: \mathcal{M} \times \mathcal{N} \rightarrow \mathcal{A}$ there is a unique functor $F^{\prime}: \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \rightarrow \mathcal{A}$ such that $F=F^{\prime} \circ B(\mathcal{M}, \mathcal{N})$.
Theorem $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong \operatorname{Fun}_{\mathcal{C}}\left(\mathcal{M}^{o p}, \mathcal{N}\right)$ - the category of left \mathcal{C}-module functors, where $\mathcal{M}^{\text {op }}$ is the opposite (left) \mathcal{C}-module category to \mathcal{M} with $X \odot_{o p} M=M \odot X^{*}$ and $\tilde{\mu}$ inverted. Moreover, if \mathcal{M} and \mathcal{N} are $(\mathcal{C}, \mathcal{D})$ - and $(\mathcal{D}, \mathcal{E})$-bimodule categories, respectively, then $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N}$ is a $(\mathcal{C}, \mathcal{E})$-bimodule category.

A $(\mathcal{C}, \mathcal{D})$-bimodule category \mathcal{M} is invertible if $\mathcal{M}^{o p} \boxtimes_{\mathcal{C}} \mathcal{M} \cong \mathcal{D}$, $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{o p} \cong \mathcal{C}\left(\mathcal{M}^{o p}\right.$ is the opposite ($\left.\mathcal{D}, \mathcal{C}\right)$-bimodule category). Brauer-Picard group of $\mathcal{C}:=\{$ Classes of invertible \mathcal{C}-bimodule categories with product $\boxtimes_{\mathcal{C}}$ and unit $\left.\mathcal{C}\right\}$ is finite.

Theorem ([ENO2], 2010) If $\mathcal{C}=\oplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$, then :

1) Each \mathcal{C}_{γ} is an invertible \mathcal{C}_{e}-bimodule category.
2) For all $a, b \in \Gamma$, the tensor product of \mathcal{C} restricts to a \mathcal{C}_{e}-balanced bifunctor $\otimes: \mathcal{C}_{a} \times \mathcal{C}_{b} \cong \mathcal{C}_{a b}$ which gives rise to a \mathcal{C}_{e}-bimodule equivalence $M_{a, b}: \mathcal{C}_{a} \boxtimes_{\mathcal{C}_{e}} \mathcal{C}_{b} \cong C_{a b}$ such that the \mathcal{C}_{e}-bimodule functors $F_{a, b, c}:=M_{a, b c}\left(I d_{\mathcal{C}_{\mathrm{a}}} \boxtimes_{\mathcal{C}_{e}} M_{b, c}\right)$ and $G_{a, b, c}:=M_{a b, c}\left(M_{a, b} \boxtimes_{\mathcal{C}_{e}} I d_{\mathcal{C}_{c}}\right)$ are isomorphic.
3) For all $a, b, c \in \Gamma$, isomorphisms $\alpha_{a, b, c}$ of the above functors viewed as \mathcal{C}_{e}-bimodule functors $\left(\mathcal{C}_{a} \boxtimes_{\mathcal{C}_{e}} \mathcal{C}_{b}\right) \boxtimes_{\mathcal{C}_{e}} \mathcal{C}_{c} \rightarrow$ $\rightarrow \mathcal{C}_{a} \boxtimes_{\mathcal{C}_{e}}\left(\mathcal{C}_{b} \boxtimes_{\mathcal{C}_{e}} \mathcal{C}_{c}\right)$ satisfy some pentagon conditions.
Vice versa, given a homomorphism $c: \Gamma \rightarrow \operatorname{BrPic}\left(\mathcal{C}_{e}\right): \gamma \mapsto \mathcal{C}_{\gamma}$ and a collection of equivalences $M_{a, b}: \mathcal{C}_{a} \boxtimes_{\mathcal{C}_{e}} \mathcal{C}_{b} \cong C_{a b}$, one can, if some cohomological obstructions vanish, construct a 「-extension of \mathcal{C}_{e} with tensor product $\boxtimes_{\mathcal{C}_{e}}$ and associativity isomorphisms $\alpha_{a, b, c}$.

Classification of module and bimodule categories over $\operatorname{Vec}_{G}^{\omega}$

Left $V_{G e c}^{\omega}{ }_{G}^{\omega}$-module categories are of the form $\mathcal{M}(L, \mu)$, where $L<G$ such that $\left.\omega\right|_{L \times L \times L}=1$ in $H^{3}\left(L, \mathbb{C}^{\times}\right)$and $\mu \in C^{2}\left(L, \mathbb{C}^{\times}\right)$ satisfies $\partial^{2} \mu=\left.\omega\right|_{L \times L \times L}([$ Ostrik], 2006). Then $\operatorname{Irr}(\mathcal{M}(L, \mu))=$ $=G / L$ and the induced 2-cochain $\tilde{\mu} \in C^{2}\left(G, \operatorname{Fun}\left(G / L, \mathbb{C}^{\times}\right)\right)$ defines the associativities. Similarly - right module categories.

Remark If $\omega=1$, then $\left.\tilde{\mu}^{r}(M, \cdot, \cdot) \mapsto \tilde{\mu}^{r}(\mathbf{1}, \cdot, \cdot)\right|_{L \times L}:=\mu^{r}(\cdot, \cdot)$
($\mathbf{1}=L$) defines, due to Shapiro's lemma, an isomorphism

$$
H^{n}\left(G, \mathbb{F} u n\left(G / L, \mathbb{C}^{\times}\right)\right) \cong H^{n}\left(L, \mathbb{C}^{\times}\right)
$$

The associativity isomorphisms of $\mathcal{M}(L, \mu)^{o p}$ are defined by the 2-cochain induced from $\mu^{o p}(s, t):=\mu^{-1}\left(t^{-1}, s^{-1}\right)$.
Then bimodule categories over $\operatorname{Vec}_{G}^{\omega}$ are classified by pairs (L, μ), where $L<G \times G^{o p}$ and $\mu \in C^{2}\left(L, \mathbb{C}^{\times}\right)$satisfies
$\partial^{2} \mu=\left.\left(\omega \otimes \omega^{o p}\right)\right|_{L \times L \times L}$. Here

$$
\omega^{O P}\left(s^{O P}, t^{O P}, u^{O P}\right):=\omega^{-1}\left(s^{-1}, t^{-1}, u^{-1}\right)
$$

Cohomology related to $\mathbb{Z} / 2 \mathbb{Z}$-extensions of $\operatorname{Vec}_{G}^{\omega}$:

Alternatively, let $A_{1}<G, A_{2}<G^{o p}$ be such that $L \cap(G \times\{e\})=$ $=A_{1} \times\{e\}$ and $L \cap\left(\{e\} \times G^{o p}\right)=\{e\} \times A_{2}$. One can identify $\left(G \times G^{O P}\right) / L$ with G / A_{1} and $G^{O P} / A_{2}$ and show, putting $\mu^{\prime}:=\left.\mu\right|_{\left(A_{1} \times\{e\}, A_{1} \times\{e\}\right)}, \mu^{r}:=\left.\mu\right|_{\left(\{e\} \times A_{2},\{e\} \times A_{2}\right)}$,
$\chi:=\left.\mu\right|_{\left(A_{1} \times\{e\},\{e\} \times A_{2}\right)}$, that for all
$\left(s_{1}, s_{2}^{o p}\right),\left(t_{1}, t_{2}^{o P}\right) \in G \times G^{o p}, M \in\left(G \times G^{o p}\right) / L:$

$$
\begin{gathered}
\tilde{\mu}\left(\left(s_{1}, s_{2}^{o p}\right),\left(t_{1}, t_{2}^{o p}\right), M\right)= \\
=\tilde{\chi}\left(s_{1}, t_{1} \cdot M, t_{2}\right) \mu^{\prime}\left(s_{1}, t_{1}, M\right) \mu^{r}\left(\left(s_{1} t_{1}\right) \cdot M, t_{2}, s_{2}\right) .
\end{gathered}
$$

The pentagon conditions for the C_{0}-bimodule category structure $\tilde{\mu}$ give the following cohomological equations :

$$
\begin{aligned}
& \left.\tilde{\mu}^{r}(M \cdot s, t, u)\right) \tilde{\mu}^{r}(M, s, t u) \omega(s, t, u)=\tilde{\mu}^{r}(M, s, t) \tilde{\mu}^{r}(M, s t, u), \\
& \tilde{\mu}^{r}(M, t, u) \tilde{\chi}(s, M, t u)=\tilde{\chi}(s, M \cdot t, u) \tilde{\chi}(s, M, t) \tilde{\mu}^{r}(s \cdot M, t, u),
\end{aligned}
$$

and similar equations connecting the 2 -cochains $\tilde{\mu}^{\prime}$ and $\tilde{\chi}$.

An invertible \mathcal{C}_{0}-bimodule structure on \mathcal{C}_{1}

As $\Gamma=\mathbb{Z} / 2 \mathbb{Z}, \mathcal{C}_{1}$ is invertible and $\mathcal{C}_{1} \cong \mathcal{C}_{1}^{o p}$, so $\operatorname{Fun}_{\mathcal{C}_{0}}\left(\mathcal{C}_{1}, \mathcal{C}_{1}\right) \cong$ $\cong C_{0}$ if \mathcal{C}_{1} is viewed as a right \mathcal{C}_{0}-module category (equivalent to $\left.\mathcal{M}\left(A_{2}, \mu^{r}\right)\right)$. As \mathcal{C}_{0} is pointed, this is possible iff $A_{2} \triangleleft G$ and is abelian ([Naidu], 2007). Similarly for A_{1}. One can also show that $\chi: A_{1} \times A_{2} \rightarrow \mathbb{C}^{\times}$must be a non-degenerate bicharacter.

The equivalence $\mathcal{C}_{1} \cong \mathcal{C}_{1}^{\text {op }}$ implies: $A_{1}=A_{2}=A, \mu^{r}(a, b) \cong$ $\mu^{\prime}\left(b^{-1}, a^{-1}\right)^{-1}$ and also that the bicharacter χ is symmetric. As $A \triangleleft G$ is abelian, we have $G \cong A \underset{\rho}{\rtimes}(G / A)$ - a twisted semidirect product, where G / A acts on A and $\rho \in Z^{2}(G / A, A)$.

Example: $\mathbb{Z} / 4 \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z} \underset{\rho}{\rtimes} \mathbb{Z} / 2 \mathbb{Z}$ (action is trivial, ρ is nontrivial).
We also show that $L \cong(A \times A) \underset{\tilde{\rho}}{\rtimes}(G / A)$, where G / A acts on $A \times A$ by $t \cdot(a, b)=(t \cdot a, \varepsilon(t) \cdot b), \varepsilon \in \operatorname{Aut}(G / A)$ such that $\varepsilon^{2}=\operatorname{Ad}(\delta), \varepsilon(\delta)=\delta$ for some $\delta \in S / A$, and $\tilde{\rho} \in Z^{2}(G / A, A \times A)$ coming from ρ.

Next, we calculate explicitly the equivalences $M_{a, b}$ and the functors $F_{a, b, c}, G_{a, b, c}$ as above, for all $a, b, c \in \mathbb{Z} / 2 \mathbb{Z}$, in terms of the triple $\left(\omega, \tilde{\mu}^{r}, \tilde{\chi}\right)$, and show that these functors are isomorphic. This means that the cohomological obstruction $\mathrm{O}_{3}(c)$ (see [ENO2], 2010) vanishes. So we are able to equip $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ with a quasi-tensor product, i.e., with a bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ such that $\otimes \circ\left(\otimes \times i d_{\mathcal{C}}\right) \cong \otimes \circ\left(i d_{\mathcal{C}} \times \otimes\right)$.

Let $\alpha_{a, b, c}$ be isomorphisms of the functors $F_{a, b, c}$ and $G_{a, b, c}$. According to [ENO2], (2010), there is a choice of $\alpha_{a, b, c}$ satisfying the pentagon conditions iff some cohomological obstruction $0_{4}(c, M) \in H^{4}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{C}^{\times}\right)$vanishes. As $H^{4}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{C}^{\times}\right)=\{0\}$, such a choice exists. Moreover, the classes of equivalence of such $\alpha_{a, b, c}$ are described by $H^{3}\left(\mathbb{Z} / 2 \mathbb{Z}, \mathbb{C}^{\times}\right)=\mathbb{Z} / 2 \mathbb{Z}$, so there exactly 2 of them, and one can choose representatives that differ only by the sign of $\alpha_{1,1,1}$. In fact, we are able to calculate $\alpha_{a, b, c}$ explicitly.

This analysis allows to prove :

A characterization of $\mathbb{Z} / 2 \mathbb{Z}$-extensions of $\operatorname{Vec}_{G}^{\omega}$

Theorem ([VV], 2012)
(case $G=A \rtimes(G / A), \omega=1)$:
$\mathbb{Z} / 2 \mathbb{Z}$-extensions of $\operatorname{Vec} c_{G}^{1}$ are parameterized by collections
($A, \chi, \tau, \varepsilon, \delta, \psi, \nu$), where:

- A is a normal abelian subgroup of G,
- χ is a symmetric non-degenerate bicharacter on A,
- $\tau= \pm|A|^{-1 / 2}$,
- ε is an isomorphism of G / A,
- $\delta \in G / A$ is such that $\varepsilon^{2}=\operatorname{Ad}(\delta), \varepsilon(\delta)=\delta$,
- $\psi \in Z^{1}\left(G / A, F u n\left(A \times A, \mathbb{C}^{\times}\right)\right)$such that $\frac{\chi}{{ }^{t} \chi}=\partial^{1} \psi$ and $\psi^{-1}(t, a, b) \cong \psi\left(\varepsilon(t), b^{-1}, a^{-1}\right)$,
- $\nu \in Z^{2}\left(G / A, \mathbb{C}^{\times}\right)$such that $\nu^{-1} \cong \nu \circ(\varepsilon \times \varepsilon)$.

Then $\operatorname{Irr}(c(0))=G, \operatorname{Irr}(c(1))=G / A$ and the fusion rule is :
$x^{*}=x^{-1}, \quad M^{*}=\varepsilon^{-1}\left(M^{-1}\right) \delta, \quad x \otimes y=x y$,
$x \otimes M=x \cdot M, \quad M \otimes x=M \varepsilon(p(x)), \quad M \otimes N=\underset{M=x N^{*}}{\oplus} x$,
here $p(x)$ is an A-coset containing x.

The associativity isomorphisms of $\mathbb{Z} / 2 \mathbb{Z}$-extensions

 of $\operatorname{Vec}_{G}^{\omega}$One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\chi}$:

- $\alpha_{0,0,0}(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha_{1,0,0}(K, x, y)=i d_{K x y}$
- $\alpha_{0,1,0}(x, K, y)=\tilde{\chi}(x, K, y) i d_{x K y}$
- $\alpha_{0,0,1}(x, y, K)=i d_{x y K}$
- $\alpha_{0,1,1}(x, K, L)=\oplus_{K=s L^{*}} i d_{x s}$
- $\alpha_{1,1,0}(K, L, x)=\oplus_{K=s L} * i d_{s x}$
- $\alpha_{1,0,1}(K, x, L)=\oplus_{K x=s L^{*}} \tilde{\chi}\left(s,(x L)^{*}, x\right) i d_{s}$
- $\alpha_{1,1,1}(K, L, M)=$ the matrix $\left(\tau \tilde{\chi}^{-1}\left(s, L^{*}, t\right) i d_{s M}\right)_{K=s L^{*}, L=t M^{*}}$

Remarks. 1. The Tambara-Yamagami case : $A=G$.
2. More complicated description of $\mathbb{Z} / 2 \mathbb{Z}$-extensions of $\operatorname{Vec}_{G}^{\omega}$ was obtained by J. Liptrap (2010)

Examples

1. If G is abelian, $|G|=2 p$ (p is prime), $A<G$ is non-trivial and such that $\left.\omega\right|_{A \times A \times A}=1$.
Analyzing symmetric non-degenerate bicharacters and 2-cocycles on A in various special cases, we have:

Proposition.

(i) If $\mathrm{p}=2$ and $G=\mathbb{Z} / 4 \mathbb{Z}, A=\mathbb{Z} / 2 \mathbb{Z}$, there are 2 fusion rules and 4 non equivalent fusion categories for each of them (in part, this result was obtained earlier by P. Bonderson, 2007).
(ii) If $\mathrm{p}=2$ and $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, there are 16 non equivalent fusion categories for any of 3 non-trivial subgroups of G.
(iii) If p is odd prime, so $G=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$, then :
a) if $A=(0, \mathbb{Z} / p \mathbb{Z})$, there are 8 non equivalent fusion categories;
b) if $A=(\mathbb{Z} / 2 \mathbb{Z}, 0)$, there are 6 non equivalent fusion categories.

Examples and applications

2. Alternating group $G=A_{4} \cong A \rtimes \mathbb{Z} / 3 \mathbb{Z}, A=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

There are 8 non equivalent fusion categories.
3. Dihedral group $G=D_{p}:=\mathbb{Z} / p \mathbb{Z} \rtimes \mathbb{Z} / 2 \mathbb{Z}$ (p is odd prime). $A=(\mathbb{Z} / p \mathbb{Z}, 0)$. There are 8 non equivalent fusion categories.

Application to the subfactor theory will be discussed by J.-M. Vallin.

REFERENCES:

1. P. Etingof, D. Nikshych, V. Ostrik, On fusion categories, Ann. Math., 162 (2005), 581-642.
2. P. Etingof, D. Nikshych, V. Ostrik, Fusion categories and homotopy theory, Quantum Topology, 1, n. 3 (2010), 209-273.
3. J. Liptrap, Generalized Tambara-Yamagami categories (2010), arXiv :math/1002.3166v2[math.QA].
4. C. Mével, Exemples et applications des groupoides quantiques finis, Ph.D. Thesis, Université de Caen, 2010.
5. D. Nikshych, L. Vainerman, Finite quantum groupoids and their applications, New Directions of Hopf Algebras, MSRI Publications, 43 (2002), 211-262.
6. V. Ostrik, Module categories over the Drinfeld double of a finite group, rectified article (2006), arXiv :math/0202130v2[math.QA].
7. D. Tambara, S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra, 209 (2) (1998), 692-707.
8. L. Vainerman, J.-M. Vallin, On $\mathbb{Z} / 2 \mathbb{Z}$-extensions of pointed fusion categories, Banach Center Publications, 98 (2012), 343-366.
