$\mathbb{Z}/2\mathbb{Z}$ -extensions of pointed fusion categories (joint work with J.-M. Vallin)

Leonid Vainerman

University of Caen

Dijon, May 22, 2013

A fusion category ${\mathcal C}$:

A tensor category with associativity isomorphisms α(X, Y, Z) : (X ⊗ Y) ⊗ Z ↦ X ⊗ (Y ⊗ Z) (X, Y, Z ∈ Ob(C)) satisfying the Pentagon condition :

A semisimple category with duality ev_X : X* ⊗ X → 1 and coev_X : 1 → X ⊗ X*, finitely many (classes of) simple objects (X_i)_{i=1,..,rk(C)} and finite dimensional Hom-spaces :

$$X_i\otimes X_j= \mathop{\oplus}\limits_k {\sf N}_{ij}^k X_k$$
 (fusion rule) and ${f 1}=X_{i_0}.$

We suppose that the ground field is \mathbb{C} and $X = \mathbf{1} \otimes X = X \otimes \mathbf{1}$.

Dimensions

Frobenius-Perron dimension of X_i - the largest nonnegative eigenvalue of N_{ij}^k . We have

$$FPdim(X_i \otimes X_j) = FPdim(X_i)FPdim(X_j),$$

$$FPdim(X_i \oplus X_j) = FPdim(X_i) + FPdim(X_j)$$

which gives a homomorphism of the **fusion ring** of C to \mathbb{R} . By definition, $FPdim(C) = \sum_i FPdim(X_i)^2$.

Proposition ([ENO1], 2005) If $FPdim(\mathcal{C}) \in \mathbb{N}$, then : 1) \mathcal{C} admits a unique **pivotal structure** (i.e., a family of isomorphisms $a_X : X \mapsto X^{**}$ such that $a_{X \otimes Y} = a_X \otimes a_Y$) satisfying $Tr(a_X) = FPdim(X)$, where $Tr(a_X) := ev_{X^*} \circ \circ(a_X \otimes id_{X^*}) \circ coev_X \in End(1) \cong \mathbb{C}, X, Y \in Ob(\mathcal{C})$. Such categories are called **pseudo-unitary**, they are automatically **spherical**, i.e., $Tr(a_X) = Tr(a_{X^*})$. 2) $Tr(a_{X_i}) = FPdim(X_i) = \sqrt{N_i}$, where $N_i \in \mathbb{N}$.

Examples of fusion categories

1) The category of finite dimensional vector spaces (rank 1 fusion category), representation categories of finite groups or finite dimensional semisimple Hopf algebras.

2) $C = Vec_G^{\omega}$: simple objects are $g, h, k \in G$, fusion rule : $g \otimes h = gh$, duality : $g^* = g^{-1}$, $\alpha(g, h, k) = \omega(g, h, k)Id_{ghk}$, where ω is a 3-cocycle on a finite group G -**Pointed fusion categories**.

3) Categories of bimodules coming from the theory of Von Neumann subfactors of finite index and finite depth.

In particular, Yang-Lee fusion category : $Ob(C) = \{1, X\}, X \otimes X = 1 \oplus X,$ so $(FPdim(X))^2 = 1 + FPdim(X) \Longrightarrow FPdim(X) = \frac{1+\sqrt{5}}{2}.$

Graded fusion categories :

 $\mathcal{C}=\oplus_{\gamma\in\Gamma}\mathcal{C}_{\gamma},\ \ \mathcal{C}_{a}\otimes\mathcal{C}_{b}\subset\mathcal{C}_{ab},\ a,b\in\Gamma\ \ (\Gamma\text{ is a finite group}).$

We want to classify $\mathbb{Z}/2\mathbb{Z}$ -extensions $\mathcal{C} = \mathcal{C}_0 \oplus \mathcal{C}_1$ of $\mathcal{C}_0 = Vec_G^{\omega}$ Proposition If $\mathcal{C}_0 = Vec_G^{\omega}$, then :

- G acts transitively on both sides on the set Irr(C₁) = G/A of simple objects of C₁, these actions commute and the stabilizer of any simple object is A ⊲ G.
- ► Fusion rules and duality : for $g, h \in G, M, N \in G/A$, $g \otimes M = g \cdot M, M \otimes g = M \cdot g, (g \cdot M)^* = M^* \cdot g^{-1},$ $M \otimes N = \bigoplus_{M=g \cdot N^*} g$, and $\{g \in G | M = gN^*\}$ - an A-coset.

Corollary FPdim(g) = 1, $\forall g \in G$, $FPdim(M) = \sqrt{|A|}$, $\forall M \in G/A$, so $FPdim(\mathcal{C}) = 2|G|$ and \mathcal{C} is pseudo-unitary.

Example : Tambara-Yamagami categories ([TY], 1998), where $Irr(C_1) = \{M = M^*\}$. Then A = G must be abelian and $\omega = 1$. They are classified by triples (A, χ, τ) , where $\chi : A \times A \to \mathbb{C}^{\times}$ is a symmetric non-degenerate bicharacter on A and $\tau = \pm |A|^{-1/2}$.

The structure of graded fusion categories ([ENO2], 2010)

Right *C*-module category $(\mathcal{M}, \tilde{\mu}^r)$: a bifunctor $\odot : \mathcal{M} \times \mathcal{C} \longrightarrow \mathcal{M}$ equipped with associativity isomorphisms $\tilde{\mu}^r : \mathcal{M} \odot (X \otimes Y) \mapsto$ $\mapsto (\mathcal{M} \odot X) \odot Y$ satisfying the **Pentagon conditions** :

Right module functor $(F, \gamma) : (\mathcal{M}_1, \tilde{\mu}_1^r) \to (\mathcal{M}_2, \tilde{\mu}_2^r)$ is a functor $F : \mathcal{M}_1 \to \mathcal{M}_2$ equipped with a family of isomorphisms $\gamma(M, X) : F(M \odot X) \to F(M) \odot X$ satisfying

Two right module functors, (F^1, γ^1) and (F^2, γ^2) , are said to be isomorphic if there is a family of isomorphisms $\eta(M)$: $F^1(M) \mapsto F^2(M)$ such that

Bimodule categories

A $(\mathcal{C}, \mathcal{D})$ -bimodule category is a module category over $\mathcal{C} \boxtimes \mathcal{D}^{op}$, where \mathcal{D}^{op} is the opposite fusion category to \mathcal{D} (i.e., with reversed order of tensor product and inverted associativity isomorphisms) and \boxtimes is Deligne's tensor product of finite abelian linear categories.

Alternatively, a $(\mathcal{C}, \mathcal{D})$ -bimodule category, is defined by three structures : right \mathcal{D} -module category as above, a left \mathcal{C} -module category defined by a bifunctor $\odot : \mathcal{C} \times \mathcal{M} \longrightarrow \mathcal{M}$ equipped with associativity isomorphisms $\tilde{\mu}^{l} : (X \otimes Y) \odot M \mapsto X \otimes (Y \odot M)$, and also left-right compatibility isomorphisms :

 $\tilde{\chi}(X, M, Y) : (X \odot M) \odot Y \mapsto X \odot (M \odot Y)$

satisfying the corresponding pentagon conditions ([Greenough], 2010).

Then one can define bimodule functors and their isomorphisms.

Tensor product of module categories over C

Let $(\mathcal{M}, \tilde{\mu}^r)$ and $(\mathcal{N}, \tilde{\mu}^l)$ be right and left \mathcal{C} -module categories and \mathcal{A} be an abelian category. A bifunctor $F : \mathcal{M} \times \mathcal{N} \to \mathcal{A}$ is \mathcal{C} -balanced if there is a family of isomorphisms

$$b_{M,X,N}: F(M \odot X, N) \rightarrow F(M, X \odot N)$$

satisfying some pentagon condition with respect to $\tilde{\mu}^r$ and $\tilde{\mu}^l$.

Tensor product $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ is an abelian category equipped with a \mathcal{C} -balanced bifunctor $B(\mathcal{M}, \mathcal{N}) : \mathcal{M} \times \mathcal{N} \to \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N}$ satisfying the universal property : for any \mathcal{C} -balanced bifunctor $F : \mathcal{M} \times \mathcal{N} \to \mathcal{A}$ there is a unique functor $F' : \mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \to \mathcal{A}$ such that $F = F' \circ B(\mathcal{M}, \mathcal{N})$.

Theorem $\mathcal{M} \boxtimes_{\mathcal{C}} \mathcal{N} \cong Fun_{\mathcal{C}}(\mathcal{M}^{op}, \mathcal{N})$ - the category of left \mathcal{C} -module functors, where \mathcal{M}^{op} is the opposite (left) \mathcal{C} -module category to \mathcal{M} with $X \odot_{op} \mathcal{M} = \mathcal{M} \odot X^*$ and $\tilde{\mu}$ inverted. Moreover, if \mathcal{M} and \mathcal{N} are $(\mathcal{C}, \mathcal{D})$ - and $(\mathcal{D}, \mathcal{E})$ -bimodule categories, respectively, then $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{N}$ is a $(\mathcal{C}, \mathcal{E})$ -bimodule category. A $(\mathcal{C}, \mathcal{D})$ -bimodule category \mathcal{M} is invertible if $\mathcal{M}^{op} \boxtimes_{\mathcal{C}} \mathcal{M} \cong \mathcal{D}$, $\mathcal{M} \boxtimes_{\mathcal{D}} \mathcal{M}^{op} \cong \mathcal{C}$ (\mathcal{M}^{op} is the opposite $(\mathcal{D}, \mathcal{C})$ -bimodule category). Brauer-Picard group of $\mathcal{C} := \{$ Classes of invertible \mathcal{C} -bimodule categories with product $\boxtimes_{\mathcal{C}}$ and unit $\mathcal{C}\}$ is finite.

Theorem ([ENO2], 2010) If $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$, then : 1) Each C_{γ} is an invertible C_e -bimodule category. 2) For all $a, b \in \Gamma$, the tensor product of C restricts to a C_e -balanced bifunctor $\otimes : C_a \times C_b \cong C_{ab}$ which gives rise to a \mathcal{C}_e -bimodule equivalence $M_{a,b}: \mathcal{C}_a \boxtimes_{\mathcal{C}_a} \mathcal{C}_b \cong \mathcal{C}_{ab}$ such that the C_e -bimodule functors $F_{a,b,c} := M_{a,bc}(Id_{C_a} \boxtimes_{C_e} M_{b,c})$ and $G_{a,b,c} := M_{ab,c}(M_{a,b} \boxtimes_{\mathcal{C}_e} Id_{\mathcal{C}_c})$ are isomorphic. 3) For all $a, b, c \in \Gamma$, isomorphisms $\alpha_{a,b,c}$ of the above functors viewed as \mathcal{C}_e -bimodule functors $(\mathcal{C}_a \boxtimes_{\mathcal{C}_e} \mathcal{C}_b) \boxtimes_{\mathcal{C}_e} \mathcal{C}_c \rightarrow$ $\rightarrow \mathcal{C}_{a} \boxtimes_{\mathcal{C}_{a}} (\mathcal{C}_{b} \boxtimes_{\mathcal{C}_{a}} \mathcal{C}_{c})$ satisfy some pentagon conditions.

Vice versa, given a homomorphism $c : \Gamma \to BrPic(\mathcal{C}_e) : \gamma \mapsto \mathcal{C}_{\gamma}$ and a collection of equivalences $M_{a,b} : \mathcal{C}_a \boxtimes_{\mathcal{C}_e} \mathcal{C}_b \cong \mathcal{C}_{ab}$, one can, if some cohomological obstructions vanish, construct a Γ -extension of \mathcal{C}_e with tensor product $\boxtimes_{\mathcal{C}_e}$ and associativity isomorphisms $\alpha_{a,b,c}$. Classification of module and bimodule categories over Vec_G^{ω}

Left Vec_{G}^{ω} -module categories are of the form $\mathcal{M}(L,\mu)$, where L < G such that $\omega|_{L \times L \times L} = 1$ in $H^{3}(L, \mathbb{C}^{\times})$ and $\mu \in C^{2}(L, \mathbb{C}^{\times})$ satisfies $\partial^{2}\mu = \omega|_{L \times L \times L}$ ([Ostrik], 2006). Then $Irr(\mathcal{M}(L,\mu)) = G/L$ and the induced 2-cochain $\tilde{\mu} \in C^{2}(G, Fun(G/L, \mathbb{C}^{\times}))$ defines the associativities. Similarly - right module categories.

Remark If $\omega = 1$, then $\tilde{\mu}^r(M, \cdot, \cdot) \mapsto \tilde{\mu}^r(\mathbf{1}, \cdot, \cdot)|_{L \times L} := \mu^r(\cdot, \cdot)$ ($\mathbf{1} = L$) defines, due to **Shapiro's lemma**, an isomorphism

$$H^n(G, \mathbb{F}un(G/L, \mathbb{C}^{\times})) \cong H^n(L, \mathbb{C}^{\times}).$$

The associativity isomorphisms of $\mathcal{M}(L,\mu)^{op}$ are defined by the 2-cochain induced from $\mu^{op}(s,t) := \mu^{-1}(t^{-1},s^{-1})$.

Then bimodule categories over Vec_G^{ω} are classified by pairs (L, μ) , where $L < G \times G^{op}$ and $\mu \in C^2(L, \mathbb{C}^{\times})$ satisfies $\partial^2 \mu = (\omega \otimes \omega^{op})|_{L \times L \times L}$. Here

$$\omega^{op}(s^{op}, t^{op}, u^{op}) := \omega^{-1}(s^{-1}, t^{-1}, u^{-1}).$$

Cohomology related to $\mathbb{Z}/2\mathbb{Z}$ -extensions of Vec_G^{ω} :

Alternatively, let
$$A_1 < G$$
, $A_2 < G^{op}$ be such that $L \cap (G \times \{e\}) =$
= $A_1 \times \{e\}$ and $L \cap (\{e\} \times G^{op}) = \{e\} \times A_2$. One can identify
 $(G \times G^{op})/L$ with G/A_1 and G^{op}/A_2 and show, putting
 $\mu^I := \mu|_{(A_1 \times \{e\}, A_1 \times \{e\})}, \ \mu^r := \mu|_{(\{e\} \times A_2, \{e\} \times A_2)}, \ \chi := \mu|_{(A_1 \times \{e\}, \{e\} \times A_2)}, \ \text{that for all} \ (s_1, s_2^{op}), (t_1, t_2^{op}) \in G \times G^{op}, M \in (G \times G^{op})/L :$
 $\tilde{\mu}((s_1, s_2^{op}), (t_1, t_2^{op}), M) =$
 $= \tilde{\chi}(s_1, t_1 \cdot M, t_2)\mu^I(s_1, t_1, M)\mu^r((s_1t_1) \cdot M, t_2, s_2).$

The pentagon conditions for the C₀-bimodule category structure $\tilde{\mu}$ give the following cohomological equations :

$$\tilde{\mu}^r(M \cdot s, t, u))\tilde{\mu}^r(M, s, tu)\omega(s, t, u) = \tilde{\mu}^r(M, s, t)\tilde{\mu}^r(M, st, u),$$

 $\tilde{\mu}^{r}(M,t,u)\tilde{\chi}(s,M,tu) = \tilde{\chi}(s,M\cdot t,u)\tilde{\chi}(s,M,t)\tilde{\mu}^{r}(s\cdot M,t,u),$

and similar equations connecting the 2-cochains $\tilde{\mu}^{I}$ and $\tilde{\chi}$.

An invertible C_0 -bimodule structure on C_1

As $\Gamma = \mathbb{Z}/2\mathbb{Z}$, C_1 is invertible and $C_1 \cong C_1^{op}$, so $Fun_{C_0}(C_1, C_1) \cong C_0$ if C_1 is viewed as a right C_0 -module category (equivalent to $\mathcal{M}(A_2, \mu^r)$). As C_0 is pointed, this is possible iff $A_2 \triangleleft G$ and is abelian ([Naidu], 2007). Similarly for A_1 . One can also show that $\chi : A_1 \times A_2 \to \mathbb{C}^{\times}$ must be a non-degenerate bicharacter.

The equivalence $C_1 \cong C_1^{op}$ implies : $A_1 = A_2 = A$, $\mu^r(a, b) \cong \mu^l(b^{-1}, a^{-1})^{-1}$ and also that the bicharacter χ is symmetric. As $A \triangleleft G$ is abelian, we have $G \cong A \rtimes (G/A)$ - a twisted semidirect product, where G/A acts on A and $\rho \in Z^2(G/A, A)$.

Example : $\mathbb{Z}/4\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \rtimes_{\rho} \mathbb{Z}/2\mathbb{Z}$ (action is trivial, ρ is nontrivial).

We also show that $L \cong (A \times A) \rtimes (G/A)$, where G/A acts on $A \times A$ by $t \cdot (a, b) = (t \cdot a, \varepsilon(t) \cdot b)$, $\varepsilon \in Aut(G/A)$ such that $\varepsilon^2 = Ad(\delta), \varepsilon(\delta) = \delta$ for some $\delta \in S/A$, and $\tilde{\rho} \in Z^2(G/A, A \times A)$ coming from ρ .

Next, we calculate explicitly the equivalences $M_{a,b}$ and the functors $F_{a,b,c}$, $G_{a,b,c}$ as above, for all $a, b, c \in \mathbb{Z}/2\mathbb{Z}$, in terms of the triple $(\omega, \tilde{\mu}^r, \tilde{\chi})$, and show that these functors are isomorphic. This means that the cohomological obstruction $O_3(c)$ (see [ENO2], 2010) vanishes. So we are able to equip $\mathcal{C} = \mathcal{C}_0 \oplus \mathcal{C}_1$ with a quasi-tensor product, i.e., with a bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ such that $\otimes \circ (\otimes \times id_{\mathcal{C}}) \cong \otimes \circ (id_{\mathcal{C}} \times \otimes)$.

Let $\alpha_{a,b,c}$ be isomorphisms of the functors $F_{a,b,c}$ and $G_{a,b,c}$. According to [ENO2], (2010), there is a choice of $\alpha_{a,b,c}$ satisfying the pentagon conditions iff some cohomological obstruction $0_4(c, M) \in H^4(\mathbb{Z}/2\mathbb{Z}, \mathbb{C}^{\times})$ vanishes. As $H^4(\mathbb{Z}/2\mathbb{Z}, \mathbb{C}^{\times}) = \{0\}$, such a choice exists. Moreover, the classes of equivalence of such $\alpha_{a,b,c}$ are described by $H^3(\mathbb{Z}/2\mathbb{Z}, \mathbb{C}^{\times}) = \mathbb{Z}/2\mathbb{Z}$, so there exactly 2 of them, and one can choose representatives that differ only by the sign of $\alpha_{1,1,1}$. In fact, we are able to calculate $\alpha_{a,b,c}$ explicitly.

This analysis allows to prove :

A characterization of $\mathbb{Z}/2\mathbb{Z}$ -extensions of Vec_G^{ω}

Theorem ([VV], 2012) (case $G = A \rtimes (G/A), \omega = 1$): $\mathbb{Z}/2\mathbb{Z}$ -extensions of Vec_G^1 are parameterized by collections $(A, \chi, \tau, \varepsilon, \delta, \psi, \nu)$, where :

- ► A is a normal abelian subgroup of G,
- χ is a symmetric non-degenerate bicharacter on A,

▶
$$au = \pm |A|^{-1/2}$$
,

- ε is an isomorphism of G/A,
- $\delta \in G/A$ is such that $\varepsilon^2 = Ad(\delta), \varepsilon(\delta) = \delta$,

▶
$$\psi \in Z^1(G/A, Fun(A \times A, \mathbb{C}^{\times}))$$
 such that $\frac{\chi}{t_{\chi}} = \partial^1 \psi$ and
 $\psi^{-1}(t, a, b) \cong \psi(\varepsilon(t), b^{-1}, a^{-1}),$
▶ $\nu \in Z^2(G/A, \mathbb{C}^{\times})$ such that $\nu^{-1} \cong \nu \circ (\varepsilon \times \varepsilon).$
Then $Irr(c(0)) = G, Irr(c(1)) = G/A$ and the fusion rule is :
 $x^* = x^{-1}, \quad M^* = \varepsilon^{-1}(M^{-1})\delta, \quad x \otimes y = xy,$
 $x \otimes M = x \cdot M, \quad M \otimes x = M\varepsilon(p(x)), \quad M \otimes N = \bigoplus_{M = xN^*} x,$
here $p(x)$ is an A-coset containing x.

The associativity isomorphisms of $\mathbb{Z}/2\mathbb{Z}\text{-extensions}$ of $\textit{Vec}_{\textit{G}}^{\omega}$

One can express $\alpha(X, Y, Z)$ for $\mathcal{C} = \mathcal{C}_0 \oplus \mathcal{C}_1$ in terms of $\tilde{\chi}$:

$$\bullet \ \alpha_{0,0,0}(x,y,z) = \omega(x,y,z) id_{xyz}$$

$$\bullet \ \alpha_{1,0,0}(K,x,y) = id_{Kxy}$$

$$a_{0,1,0}(x,K,y) = \tilde{\chi}(x,K,y) id_{xKy}$$

$$\bullet \ \alpha_{0,0,1}(x,y,K) = id_{xyK}$$

$$\bullet \ \alpha_{0,1,1}(x,K,L) = \bigoplus_{K=sL^*} id_{xs}$$

$$\bullet \ \alpha_{1,1,0}(K,L,x) = \bigoplus_{K=sL^*} id_{sx}$$

$$\blacktriangleright \alpha_{1,0,1}(K,x,L) = \bigoplus_{Kx=sL^*} \tilde{\chi}(s,(xL)^*,x) id_s$$

• $\alpha_{1,1,1}(K,L,M)$ = the matrix $(\tau \tilde{\chi}^{-1}(s,L^*,t)id_{sM})_{K=sL^*;L=tM^*}$

Remarks. 1. The Tambara-Yamagami case : A = G. 2. More complicated description of $\mathbb{Z}/2\mathbb{Z}$ -extensions of Vec_{G}^{ω} was obtained by J. Liptrap (2010)

Examples

1. If G is abelian, |G| = 2p (p is prime), A < G is non-trivial and such that $\omega|_{A \times A \times A} = 1$.

Analyzing symmetric non-degenerate bicharacters and 2-cocycles on A in various special cases, we have :

Proposition.

(i) If p=2 and $G = \mathbb{Z}/4\mathbb{Z}$, $A = \mathbb{Z}/2\mathbb{Z}$, there are 2 fusion rules and 4 non equivalent fusion categories for each of them (in part, this result was obtained earlier by P. Bonderson, 2007).

(ii) If p=2 and $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, there are 16 non equivalent fusion categories for any of 3 non-trivial subgroups of G.

(iii) If p is odd prime, so $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$, then :

a) if $A = (0, \mathbb{Z}/p\mathbb{Z})$, there are 8 non equivalent fusion categories; b) if $A = (\mathbb{Z}/2\mathbb{Z}, 0)$, there are 6 non equivalent fusion categories.

Examples and applications

2. Alternating group $G = A_4 \cong A \rtimes \mathbb{Z}/3\mathbb{Z}$, $A = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. There are 8 non equivalent fusion categories.

3. Dihedral group $G = D_p := \mathbb{Z}/p\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$ (*p* is odd prime). $A = (\mathbb{Z}/p\mathbb{Z}, 0)$. There are 8 non equivalent fusion categories.

Application to the subfactor theory will be discussed by J.-M. Vallin.

REFERENCES :

1. P. Etingof, D. Nikshych, V. Ostrik, *On fusion categories*, Ann. Math., **162** (2005), 581–642.

P. Etingof, D. Nikshych, V. Ostrik, *Fusion categories and homotopy theory*, Quantum Topology, 1, n.3 (2010), 209–273.
 J. Liptrap, *Generalized Tambara-Yamagami categories (2010)*, arXiv :math/1002.3166v2[math.QA].

4. C. Mével, Exemples et applications des groupoides quantiques finis, Ph.D. Thesis, Université de Caen, 2010.

5. D. Nikshych, L. Vainerman, *Finite quantum groupoids and their applications*, New Directions of Hopf Algebras, MSRI Publications, **43** (2002), 211-262.

6. V. Ostrik, Module categories over the Drinfeld double of a finite group, rectified article (2006), arXiv :math/0202130v2[math.QA].
7. D. Tambara, S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra, 209 (2) (1998), 692–707.

8. L. Vainerman, J.-M. Vallin, On Z/2Z-extensions of pointed fusion categories, Banach Center Publications, **98** (2012), 343–366.