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A fusion category C :
I A tensor category with associativity isomorphisms
α(X ,Y ,Z ) : (X ⊗Y )⊗Z 7→ X ⊗(Y ⊗Z ) (X ,Y ,Z ∈ Ob(C))
satisfying the Pentagon condition :

((W ⊗ X )⊗ Y )⊗ Z
α(W ,X ,Y )⊗idZ //

��

(W ⊗ (X ⊗ Y ))⊗ Z

α(W ,X⊗Y ,Z)
��

α(W ⊗ X ,Y ,Z )

��

W ⊗ ((X ⊗ Y )⊗ Z )

idW⊗α(X ,Y ,Z)
��

(W ⊗ X )⊗ (Y ⊗ Z )
α(W ,X ,Y⊗Z) //W ⊗ (X ⊗ (Y ⊗ Z ))

I A semisimple category with duality evX : X ∗ ⊗ X 7→ 1 and
coevX : 1 7→ X ⊗ X ∗, finitely many (classes of) simple objects
(Xi )i=1,..,rk(C) and finite dimensional Hom-spaces :

Xi ⊗ Xj = ⊕
k

Nk
ij Xk (fusion rule) and 1 = Xi0 .

We suppose that the ground field is C and X = 1⊗ X = X ⊗ 1.



Dimensions

Frobenius-Perron dimension of Xi - the largest
nonnegative eigenvalue of Nk

ij . We have

FPdim(Xi ⊗ Xj) = FPdim(Xi )FPdim(Xj),

FPdim(Xi ⊕ Xj) = FPdim(Xi ) + FPdim(Xj)

which gives a homomorphism of the fusion ring of C to R.
By definition, FPdim(C) = ΣiFPdim(Xi )

2.

Proposition ([ENO1], 2005) If FPdim(C) ∈ N, then :
1) C admits a unique pivotal structure (i.e., a family of
isomorphisms aX : X 7→ X ∗∗ such that aX⊗Y = aX ⊗ aY )
satisfying Tr(aX ) = FPdim(X ), where Tr(aX ) := evX∗◦
◦(aX ⊗ idX∗) ◦ coevX ∈ End(1) ∼= C, X ,Y ∈ Ob(C).
Such categories are called pseudo-unitary, they are
automatically spherical, i.e., Tr(aX ) = Tr(aX∗).
2) Tr(aXi

) = FPdim(Xi ) =
√

N i , where Ni ∈ N.



Examples of fusion categories

1) The category of finite dimensional vector spaces (rank 1
fusion category), representation categories of finite groups
or finite dimensional semisimple Hopf algebras.

2) C = VecωG : simple objects are g , h, k ∈ G , fusion rule :
g ⊗ h = gh, duality : g∗ = g−1, α(g , h, k) = ω(g , h, k)Idghk ,
where ω is a 3-cocycle on a finite group G -
Pointed fusion categories.

3) Categories of bimodules coming from the theory of Von
Neumann subfactors of finite index and finite depth.

In particular, Yang-Lee fusion category :
Ob(C) = {1,X}, X ⊗ X = 1⊕ X ,

so (FPdim(X ))2 = 1 + FPdim(X ) =⇒ FPdim(X ) = 1+
√

5
2 .



Graded fusion categories :

C = ⊕γ∈ΓCγ , Ca ⊗ Cb ⊂ Cab, a, b ∈ Γ (Γ is a finite group).

We want to classify Z/2Z-extensions C = C0 ⊕ C1 of C0 = VecωG
Proposition If C0 = VecωG , then :
I G acts transitively on both sides on the set Irr(C1) = G/A

of simple objects of C1, these actions commute and the
stabilizer of any simple object is A / G .

I Fusion rules and duality : for g , h ∈ G ,M,N ∈ G/A,
g ⊗M = g ·M, M ⊗ g = M · g , (g ·M)∗ = M∗ · g−1,
M ⊗ N = ⊕

M=g ·N∗
g , and {g ∈ G |M = gN∗} - an A-coset.

Corollary FPdim(g) = 1, ∀g ∈ G , FPdim(M) =
√
|A|,

∀M ∈ G/A, so FPdim(C) = 2|G | and C is pseudo-unitary.

Example : Tambara-Yamagami categories ([TY], 1998), where
Irr(C1) = {M = M∗}. Then A = G must be abelian and ω = 1.
They are classified by triples (A, χ, τ), where χ : A× A→ C× is a
symmetric non-degenerate bicharacter on A and τ = ±|A|−1/2.



The structure of graded fusion categories ([ENO2], 2010)

Right C-module category (M, µ̃r ) : a bifunctor � :M×C −→M
equipped with associativity isomorphisms µ̃r : M � (X ⊗ Y ) 7→
7→ (M � X )� Y satisfying the Pentagon conditions :

M � ((X ⊗ Y )⊗ Z ))
µ̃r (M,X⊗Y ,Z) //

idM�α(X ,Y ,Z)
��

(M � (X ⊗ Y ))� Z

��
M � (X ⊗ (Y ⊗ Z ))

µ̃r (M,X ,Y⊗Z)
��

µ̃r (M,X ,Y )� idZ

��
(M � X )� (Y ⊗ Z )

µ̃r (M�X ,Y ,Z) // ((M � X )� Y )� Z

Right module functor (F , γ) : (M1, µ̃
r
1)→ (M2, µ̃

r
2) is a functor

F :M1 →M2 equipped with a family of isomorphisms γ(M,X ) :
F (M � X )→ F (M)� X satisfying



F (M � ((X ⊗ Y ))
γ(M,X⊗Y ) //

F (µ̃r1(M,X ,Y ))

��

F (M)� (X ⊗ Y ))

��
F ((M � X )� Y )

γ(M�X ,Y )
��

µ̃r2(F (M),X ,Y )

��
F (M � X )� Y

γ(M,X )�idY // (F (M)� X )� Y

Two right module functors, (F 1, γ1) and (F 2, γ2), are said
to be isomorphic if there is a family of isomorphisms η(M) :
F 1(M) 7→ F 2(M) such that

F 1(M � X )
η(M�X ) //

γ1(M,X )
��

F 2(M � X )

γ2(M,X )
��

F 1(M)� X
η(M)�idX // F 2(M)� X



Bimodule categories

A (C,D)-bimodule category is a module category over C �Dop,
where Dop is the opposite fusion category to D (i.e., with reversed
order of tensor product and inverted associativity isomorphisms)
and � is Deligne’s tensor product of finite abelian linear categories.

Alternatively, a (C,D)-bimodule category, is defined by three
structures : right D-module category as above, a left C-module
category defined by a bifunctor � : C ×M −→M equipped with
associativity isomorphisms µ̃l : (X ⊗ Y )�M 7→ X ⊗ (Y �M),
and also left-right compatibility isomorphisms :

χ̃(X ,M,Y ) : (X �M)� Y 7→ X � (M � Y )

satisfying the corresponding pentagon conditions ([Greenough],
2010).

Then one can define bimodule functors and their isomorphisms.



Tensor product of module categories over C
Let (M, µ̃r ) and (N , µ̃l) be right and left C-module categories
and A be an abelian category. A bifunctor F :M×N → A is
C-balanced if there is a family of isomorphisms

bM,X ,N : F (M � X ,N)→ F (M,X � N)

satisfying some pentagon condition with respect to µ̃r and µ̃l .

Tensor product M�C N is an abelian category equipped with a
C-balanced bifunctor B(M,N ) :M×N →M�C N satisfying
the universal property : for any C-balanced bifunctor
F :M×N → A there is a unique functor F ′ : M�C N → A
such that F = F ′ ◦ B(M,N ).

Theorem M�C N ∼= FunC(Mop,N ) - the category of left
C-module functors, where Mop is the opposite (left) C-module
category to M with X �op M = M � X ∗ and µ̃ inverted.
Moreover, if M and N are (C,D)- and (D, E)-bimodule categories,
respectively, then M�D N is a (C, E)-bimodule category.



A (C,D)-bimodule category M is invertible if Mop �CM∼= D,
M�DMop ∼= C ( Mop is the opposite (D, C)-bimodule category).
Brauer-Picard group of C := {Classes of invertible C-bimodule
categories with product �C and unit C} is finite.

Theorem ([ENO2], 2010) If C = ⊕γ∈ΓCγ , then :
1) Each Cγ is an invertible Ce-bimodule category.
2) For all a, b ∈ Γ, the tensor product of C restricts to a
Ce-balanced bifunctor ⊗ : Ca × Cb ∼= Cab which gives rise to a
Ce-bimodule equivalence Ma,b : Ca �Ce Cb ∼= Cab such that the
Ce-bimodule functors Fa,b,c := Ma,bc(IdCa �Ce Mb,c) and
Ga,b,c := Mab,c(Ma,b �Ce IdCc ) are isomorphic.
3) For all a, b, c ∈ Γ, isomorphisms αa,b,c of the above functors
viewed as Ce-bimodule functors (Ca �Ce Cb)�Ce Cc →
→ Ca �Ce (Cb �Ce Cc) satisfy some pentagon conditions.

Vice versa, given a homomorphism c : Γ→ BrPic(Ce) : γ 7→ Cγ
and a collection of equivalences Ma,b : Ca �Ce Cb ∼= Cab, one can, if
some cohomological obstructions vanish, construct a Γ-extension of
Ce with tensor product �Ce and associativity isomorphisms αa,b,c .



Classification of module and bimodule categories over VecωG
Left VecωG -module categories are of the form M(L, µ), where
L < G such that ω|L×L×L = 1 in H3(L,C×) and µ ∈ C 2(L,C×)
satisfies ∂2µ = ω|L×L×L ([Ostrik], 2006). Then Irr(M(L, µ)) =
= G/L and the induced 2-cochain µ̃ ∈ C 2(G ,Fun(G/L,C×))
defines the associativities. Similarly - right module categories.

Remark If ω = 1, then µ̃r (M, ·, ·) 7→ µ̃r (1, ·, ·)|L×L := µr (·, ·)
(1 = L) defines, due to Shapiro’s lemma, an isomorphism

Hn(G ,Fun(G/L,C×)) ∼= Hn(L,C×).

The associativity isomorphisms of M(L, µ)op are defined by the
2-cochain induced from µop(s, t) := µ−1(t−1, s−1).

Then bimodule categories over VecωG are classified by pairs (L, µ),
where L < G × G op and µ ∈ C 2(L,C×) satisfies
∂2µ = (ω ⊗ ωop)|L×L×L. Here

ωop(sop, top, uop) := ω−1(s−1, t−1, u−1).



Cohomology related to Z/2Z-extensions of VecωG :

Alternatively, let A1 < G , A2 < G op be such that L ∩ (G × {e}) =
= A1 × {e} and L ∩ ({e} × G op) = {e} × A2. One can identify
(G × G op)/L with G/A1 and G op/A2 and show, putting
µl := µ|(A1×{e},A1×{e}), µr := µ|({e}×A2,{e}×A2),
χ := µ|(A1×{e},{e}×A2), that for all
(s1, s

op
2 ), (t1, t

op
2 ) ∈ G × G op,M ∈ (G × G op)/L :

µ̃((s1, s
op
2 ), (t1, t

op
2 ),M) =

= χ̃(s1, t1 ·M, t2)µl(s1, t1,M)µr ((s1t1) ·M, t2, s2).

The pentagon conditions for the C0-bimodule category structure µ̃
give the following cohomological equations :

µ̃r (M · s, t, u))µ̃r (M, s, tu)ω(s, t, u) = µ̃r (M, s, t)µ̃r (M, st, u),

µ̃r (M, t, u)χ̃(s,M, tu) = χ̃(s,M · t, u)χ̃(s,M, t)µ̃r (s ·M, t, u),

and similar equations connecting the 2-cochains µ̃l and χ̃.



An invertible C0-bimodule structure on C1

As Γ = Z/2Z, C1 is invertible and C1
∼= Cop1 , so FunC0(C1, C1) ∼=

∼= C0 if C1 is viewed as a right C0-module category (equivalent to
M(A2, µ

r )). As C0 is pointed, this is possible iff A2 / G and is
abelian ([Naidu], 2007). Similarly for A1. One can also show that
χ : A1 × A2 → C× must be a non-degenerate bicharacter.

The equivalence C1
∼= Cop1 implies : A1 = A2 = A, µr (a, b) ∼=

µl(b−1, a−1)−1 and also that the bicharacter χ is symmetric. As
A / G is abelian, we have G ∼= A o

ρ
(G/A) - a twisted semidirect

product, where G/A acts on A and ρ ∈ Z 2(G/A,A).

Example : Z/4Z ∼= Z/2Z o
ρ
Z/2Z (action is trivial, ρ is nontrivial).

We also show that L ∼= (A× A) o
ρ̃

(G/A), where G/A acts on

A× A by t · (a, b) = (t · a, ε(t) · b), ε ∈ Aut(G/A) such that
ε2 = Ad(δ), ε(δ) = δ for some δ ∈ S/A, and ρ̃ ∈ Z 2(G/A,A× A)
coming from ρ.



Next, we calculate explicitly the equivalences Ma,b and the functors
Fa,b,c , Ga,b,c as above, for all a, b, c ∈ Z/2Z, in terms of the triple
(ω, µ̃r , χ̃), and show that these functors are isomorphic. This
means that the cohomological obstruction O3(c) (see [ENO2],
2010) vanishes. So we are able to equip C = C0 ⊕ C1 with a
quasi-tensor product, i.e., with a bifunctor ⊗ : C × C → C such
that ⊗ ◦ (⊗× idC) ∼= ⊗ ◦ (idC ×⊗).

Let αa,b,c be isomorphisms of the functors Fa,b,c and Ga,b,c .
According to [ENO2], (2010), there is a choice of αa,b,c satisfying
the pentagon conditions iff some cohomological obstruction
04(c,M) ∈ H4(Z/2Z,C×) vanishes. As H4(Z/2Z,C×) = {0},
such a choice exists. Moreover, the classes of equivalence of such
αa,b,c are described by H3(Z/2Z,C×) = Z/2Z, so there exactly 2
of them, and one can choose representatives that differ only by the
sign of α1,1,1. In fact, we are able to calculate αa,b,c explicitly.

This analysis allows to prove :



A characterization of Z/2Z-extensions of VecωG
Theorem ([VV], 2012)
(case G = A o (G/A), ω = 1) :
Z/2Z-extensions of Vec1

G are parameterized by collections
(A, χ, τ, ε, δ, ψ, ν), where :
I A is a normal abelian subgroup of G ,
I χ is a symmetric non-degenerate bicharacter on A,
I τ = ±|A|−1/2,
I ε is an isomorphism of G/A,
I δ ∈ G/A is such that ε2 = Ad(δ), ε(δ) = δ,

I ψ ∈ Z 1(G/A,Fun(A× A,C×)) such that
χ
tχ

= ∂1ψ and

ψ−1(t, a, b) ∼= ψ(ε(t), b−1, a−1),
I ν ∈ Z 2(G/A,C×) such that ν−1 ∼= ν ◦ (ε× ε).

Then Irr(c(0)) = G , Irr(c(1)) = G/A and the fusion rule is :
x∗ = x−1, M∗ = ε−1(M−1)δ, x ⊗ y = xy ,
x ⊗M = x ·M, M ⊗ x = Mε(p(x)), M ⊗ N = ⊕

M=xN∗
x ,

here p(x) is an A-coset containing x .



The associativity isomorphisms of Z/2Z-extensions
of VecωG

One can express α(X ,Y ,Z ) for C = C0 ⊕ C1 in terms of χ̃ :

I α0,0,0(x , y , z) = ω(x , y , z)idxyz

I α1,0,0(K , x , y) = idKxy

I α0,1,0(x ,K , y) = χ̃(x ,K , y)idxKy

I α0,0,1(x , y ,K ) = idxyK

I α0,1,1(x ,K , L) = ⊕K=sL∗ idxs

I α1,1,0(K , L, x) = ⊕K=sL∗ idsx

I α1,0,1(K , x , L) = ⊕Kx=sL∗χ̃(s, (xL)∗, x)ids

I α1,1,1(K , L,M)= the matrix (τ χ̃−1(s, L∗, t)idsM)K=sL∗;L=tM∗

Remarks. 1. The Tambara-Yamagami case : A = G .
2. More complicated description of Z/2Z-extensions of VecωG was
obtained by J. Liptrap (2010)



Examples

1. If G is abelian, |G | = 2p (p is prime), A < G is non-trivial and
such that ω|A×A×A = 1.
Analyzing symmetric non-degenerate bicharacters and 2-cocycles
on A in various special cases, we have :

Proposition.

(i) If p=2 and G = Z/4Z, A = Z/2Z, there are 2 fusion rules and
4 non equivalent fusion categories for each of them (in part, this
result was obtained earlier by P. Bonderson, 2007).

(ii) If p=2 and G = Z/2Z× Z/2Z, there are 16 non equivalent
fusion categories for any of 3 non-trivial subgroups of G .

(iii) If p is odd prime, so G = Z/2Z× Z/pZ, then :

a) if A = (0,Z/pZ), there are 8 non equivalent fusion categories ;

b) if A = (Z/2Z, 0), there are 6 non equivalent fusion categories.



Examples and applications

2. Alternating group G = A4
∼= A o Z/3Z, A = Z/2Z× Z/2Z.

There are 8 non equivalent fusion categories.

3. Dihedral group G = Dp := Z/pZ o Z/2Z (p is odd prime).
A = (Z/pZ, 0). There are 8 non equivalent fusion categories.

Application to the subfactor theory will be discussed by
J.-M. Vallin.
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