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Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra (A,m, 1,∆, ε) over C, s.t.

(i) ∆ : A→ A⊗ A : (∆⊗ i)∆ = (i ⊗∆)∆
(∆⊗ id)∆(1) = (1⊗∆(1))(∆(1)⊗ 1) = (∆(1)⊗ 1)(1⊗∆(1)),

(ii) ε : A→ C, (ε⊗ i)∆ = (i ⊗ ε)∆ = i
ε(abc) = ε(ab(1))ε(b(2)c) = ε(ab(2))ε(b(1)c), ∀a, b, c ∈ A,
(here ∆(b) = b(1) ⊗ b(2))

(iii) it exists S : A −→ A a bialgebra anti-isomorphism s. t. :
m(id⊗ S)∆(a) = ε(1(1)b)1(2),
m(S ⊗ id)∆(a) = 1(1)ε(b1(2)),
S(a(1))a(2)S(a(3)) = S(a).

∆(1) = 1⊗ 1 ⇐⇒ ε multip. ⇐⇒ (A,∆, ε,S) quantum group
If A is a C ∗-algebra s.t. ∆(a∗) = ∆(a)∗ : C ∗-Quantum Groupoid
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This is a finite dimensional bialgebra (A,m, 1,∆, ε) over C, s.t.

(i) ∆ : A→ A⊗ A : (∆⊗ i)∆ = (i ⊗∆)∆
(∆⊗ id)∆(1) = (1⊗∆(1))(∆(1)⊗ 1) = (∆(1)⊗ 1)(1⊗∆(1)),

(ii) ε : A→ C, (ε⊗ i)∆ = (i ⊗ ε)∆ = i
ε(abc) = ε(ab(1))ε(b(2)c) = ε(ab(2))ε(b(1)c), ∀a, b, c ∈ A,
(here ∆(b) = b(1) ⊗ b(2))

(iii) it exists S : A −→ A a bialgebra anti-isomorphism s. t. :
m(id⊗ S)∆(a) = ε(1(1)b)1(2),
m(S ⊗ id)∆(a) = 1(1)ε(b1(2)),
S(a(1))a(2)S(a(3)) = S(a).

∆(1) = 1⊗ 1 ⇐⇒ ε multip. ⇐⇒ (A,∆, ε,S) quantum group
If A is a C ∗-algebra s.t. ∆(a∗) = ∆(a)∗ : C ∗-Quantum Groupoid

J.M. Vallin (On a joint work in progress with L.Vainerman ) Finite C∗-Quantum groupoids and subfactors coming from fusion categories



Finite Quantum Groupoids
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The dual A∗ is again a finite (C ∗)-quantum groupoid :
(a, φ.ψ) = (∆(a), φ⊗ ψ) , (a⊗ a′, ∆̂(φ)) = (aa′, φ)
(a, Ŝ(ψ)) = (S(a), ψ), ε̂(φ) = (1, φ) ((a, φ∗) = (S(a)∗, φ))

Target and source counital maps and counital subalgebras

εt(a) = m(id⊗ S)∆(a), εs(a) = m(S ⊗ id)∆(a), ∀a ∈ A.
At := Im(εt) and As : Im(εs).
A is said to be connected if Z (A) ∩ At = C1, co-connected if
At ∩ As = C1 and biconnected if both conditions are satisfied.

A is regular if S2
|At

= 1.
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Symmetric (σ ◦∆ = ∆) and abelian Quantum Groupoids

Let G be a finite groupoid

Finite Groupoid Algebra

The ∗-algebra : CG = Vect{g |g ∈ G} is a C ∗-quantum groupoid :
(i) product : gh if g and h are composable, 0 otherwise, g∗ = g−1

(ii) ∆(g) = g ⊗ g ,
(iii) S(g) = g−1.
(iv) ε(g) = 1, the counital maps : εt(g) = gg−1, εs(g) = g−1g .

Fonctions on Finite Groupoid

The ∗-algebra : C (G) = {f : G → C} is a C ∗-quantum groupoid :
(i) ∆ : A = C (G)→ A⊗ A = C (GxG)

∆(f )(g , h) =

{
f (gh) if g,h are composable,
0 otherwise

(ii) S(f )(g) = f (g−1), f ∗(g) = f (g)
(iii) ε(f ) =

∑
u∈G0 f (u), εt(δg ) =

∑
vv−1=g

δv , εs(δg ) =
∑

v−1v=g

δv
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Subfactors and Jones tower

M von Neumann algebra : unital ∗- subalg.of L(H), M = M ′′

II1 factor : Z (M) = C1, ∃τ ∈ M∗, τ(x∗x) ≥ 0, τ(xy) = τ(yx)

Basic construction for M0 ⊂ M1, [M1 : M0] <∞,

M0 ⊂ M1
e1⊂ M2

e2⊂ M3 ⊂ ... : Jones tower

[M1 : M0] = [Mk : Mk−1] ∈ {4cos2π
n
, n ≥ 3} ∪ [4,+∞[.

Derived tower : M ′0 ∩M1 ⊂ M ′0 ∩M2 ⊂ M ′0 ∩M3 ⊂ ...
Depth k - basic construction in the last tower from step k.

Example : outer group actions

MG ⊂ M ⊂ M o G ⊂ (M o G ) o Ĝ ...- depth 2.

Galois correspondence : MG ⊂ K ⊂ M ⇔ subgroups of G .
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C∗-quantum groupoid actions on von Neumann algebras

Definitions An action of (A,∆,S , ε) on a von Neumann
algebra M : A⊗M → M, a⊗m 7→ a .m, w-cont. , s.t. :

a . xy = (a(1) . x)(a(2) . y)

(a . x)∗ = S(a)∗ . x∗

a . 1 = εt(a) . 1 and a . 1 = 0 iff εt(a) = 0

Crossed product of M by A : M o A = M ⊗
At

A :

∀z ∈ At m(z . 1)⊗ a ≡ m ⊗ za

[m ⊗ a][n ⊗ b] = [m(a(1) . n)⊗ a(2)b], [m ⊗ a]∗ = [a∗(1) .m
∗ ⊗ a∗(2)]

Fixed point subalgebra : MA = {m/∀a ∈ A, a .m = εt(a) .m}

MA ⊂ M ⊂ M o A : depth 2

An action is said to be outer if M ′ ∩ (M o A) = Z (M) o As .
Any biconnected regular C∗-quantum groupoid has an outer action
on the hyperfinite type II1 factor (M.-C. David).
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Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)

Let M0 ⊂ M1
e1⊂ M2

e2⊂ M3....... be a
Jones tower of type II1 factors of finite index and depth 2, then :

A = M ′0 ∩M2, B = M ′1 ∩M3 are biconnected C ∗-quantum
groupoids in duality

B acts outerly on M2 and M1 = MB
2 , M3

∼= M2 o B

[Mk : Mk−1] = [B : Bt ]
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Galois correspondence :

Left coideal ∗-subalgebra : I ⊂ B s.t ∆(I ) ⊂ B ⊗ I .

Crossed product : M o I = span{[m ⊗ b]|m ∈ M, b ∈ I} ⊂ M o B,

Two Lattices :

Intermediate vN subalgebras : M2 ⊂ K ⊂ M3

(K ∨ L = (K ∪ L)′′,K ∧ L = K ∩ L)

Left coideal ∗-subalgebras of B
(I ∨ J = (I ∪ J)′′, I ∧ J = I ∩ J)

are isomorphic :

K 7→ M ′1 ∩ K ⊂ B, I 7→ M2 o I ⊂ M3

K is a factor iff I is connected.
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Characterization of finite index and depth subfactors

Observation (S. Popa) :

M0 ⊂ M1︸ ︷︷ ︸
depth n

e1⊂ M2
e2⊂ M3....... ⊂ Mn−1

︸ ︷︷ ︸
depth 2

M1 corresponds to a left coideal I of a quantum groupoid B

Equivalence of Tensor categories

BimodM0−M0 with tensor product ⊗M0

Rep(B∗) : finite rank B∗-modules with tensor product :
V �W = ∆(1)(V ⊗W ), (b · (v � w) = b(1) · v � b(2) · w)
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Equivalence of Tensor categories

BimodM0−M0 with tensor product ⊗M0

Rep(B∗) : finite rank B∗-modules with tensor product :
V �W = ∆(1)(V ⊗W ), (b · (v � w) = b(1) · v � b(2) · w)
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Fusion categories

A Fusion category is a finite rigid semisimple tensor category C,
with duality, finitely many (classes of) simple objects (Vi )i=1,..,rk(C)
and finite dimensional Hom-spaces :

Vi ⊗ Vj = ⊕
k
Nk
ijVk (fusion rule) and 1 = Vi0

Associativity isomorphisms :

α(Vi ,Vj ,Vk) : (Vi ⊗ Vj)⊗ Vk 7→ Vi ⊗ (Vj ⊗ Vk).

satisfying the Pentagon condition

Example. C = VecωS , where ω is a 3-cocycle on a finite group S :
simple objects g , h, k ∈ S , fusion rule g ⊗ h = gh, duality
g∗ = g−1, α(g , h, k) = ω(g , h, k)Idghk .
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Spherical fusion categories

A fusion category C is pivotal

if for any object x in C it exists an
isomorphism ax : x → x∗∗ natural in x s.t. for all object y in C :

ax⊗y = ax ⊗ ay

A pivotal category C is spherical if for any x ∈ Irr(C) one has :

dima(x) = dima(x∗)

(dima(x) = Tr(ax) = evx∗ ◦ (ax ⊗ Idx∗) ◦ coevx in Hom(1, 1))
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Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)

Given spherical fusion category C, there is a canonical self dual
regular biconnected quantum groupoid B with commutative
Bt ' Bs ' Crk(C) such that C ' Rep(B).

Our aim is to apply this to Z/2Z- extensions of pointed fusion
categories in order to construct and analyze the subfactors
associated with them
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Z/2Z-graded extensions of pointed fusion categories

C = C0 ⊕ C1 (C0 = VecωS )
Ca ⊗ Cb ⊂ Ca+b, a, b ∈ Z/2Z

Theorem (V 2) :

Z/2Z-graded extensions of VecωS are parametrized by tuples
(A, τ, ε, δ, χ, µr , ψ, ν)

A C S , A is abelian 6= {e}, τ = ±|A|−1/2, ε ∈ Aut(S/A),
δ ∈ S/A s.t. ε2 = Ad(δ), ε(δ) = δ, (BrPic(VecωS ))(A,ε) 6= ∅
χ non deg. bichar. on A, µr ∈ C 2(A,CX ),
ψ ∈ Z 1(S/A,Fun(A× A,C×)), ν ∈ C 2(S/A,C×) s.t it exists
adeq.inductions :
χ̃ : S × S/A× S → CX , µ̃r : S/A× S × S → CX

Example A = S : Tambara-Yamagami fusion categories
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The associativity isomorphisms

One can express α(X ,Y ,Z ) for C = C0 ⊕ C1 in terms of µ̃r , χ̃, τ

Theorem (V 2) :

The Z/2Z-graded extension of VecωS given by (A, µ̃r , χ̃, τ) has the
following associativity isomorphisms :

α(x , y , z) = ω(x , y , z)idxyz

α(K , x , y) = [µ̃r (K , x , y)]−1idKxy

α(x ,K , y) = χ̃(x ,K , y)idxKy

α(x , y ,K ) = µ̃r ((xyK )∗, x , y)idxyK

α(x ,K , L) = ⊕K=sL∗ [µ̃
r (K ∗x−1, x , s)]−1idxs

α(K , L, x) = ⊕K=sL∗ µ̃
r (K ∗, s, x)idsx

α(K , x , L) = ⊕Kx=sL∗χ̃(s, (xL)∗, x)ids

α(K , L,M)= the matrix (τ χ̃−1(s, L∗, t)idsM)K=sL∗;L=tM∗
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The Z/2Z-graded extension of VecωS given by (A, µ̃r , χ̃, τ) has the
following associativity isomorphisms :

α(x , y , z) = ω(x , y , z)idxyz

α(K , x , y) = [µ̃r (K , x , y)]−1idKxy

α(x ,K , y) = χ̃(x ,K , y)idxKy

α(x , y ,K ) = µ̃r ((xyK )∗, x , y)idxyK

α(x ,K , L) = ⊕K=sL∗ [µ̃
r (K ∗x−1, x , s)]−1idxs

α(K , L, x) = ⊕K=sL∗ µ̃
r (K ∗, s, x)idsx

α(K , x , L) = ⊕Kx=sL∗χ̃(s, (xL)∗, x)ids

α(K , L,M)= the matrix (τ χ̃−1(s, L∗, t)idsM)K=sL∗;L=tM∗
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The Structure of B

Proposition

Z/2Z-graded extensions of VecωS are spherical

Demonstration :
The Perron Frobenius dimension of C is 2|S | (an integer)
Pivotal structure :
as = Ids for s ∈ S = Irr(C0)
aM = sign(τ)IdM for M ∈ S/A = Irr(C1)
dima(s) = 1, dima(M) =

√
|A|
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The Structure of B using reconstruction theorem

Proposition (V 2)

Let B be the quantum groupoid obtained by reconstruction , n =
|S |, n′ = |A| and m = n/n′ = |S/A|, then :

B ' Mn+m(C)n ⊕M2n(C)m

ii) inclusion matrix of Bt ⊂ B :

(
1n,n 1n,m
1m,n n′1m,m,

)
∈ Mn+m(C)

1p,q ∈ Mp,q(C) ( all coeff. = 1).

iii) One has : [B : Bt ] = (n +
√
nm)2 = γ2.
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Bratelli’s diagramm for Bt ⊂ B
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The co-structure of B using reconstruction theorem

One can define a basis of B

:
B : (Bs

x ,x ′)(s ∈ S , x , x ′ ∈ S ∪ S/A)

(BM
α,β)(M ∈ S/A, α, β ∈ S t S = {s, s/s ∈ S}

Product : Ba
b,b′ .B

c
d ,d ′ = γ(a, b, b′, c , d , d ′)Bz

w ,w ′ (25formul.)

(Bg
t,t′ .B

M
h,h′ =

µ̃r ((t ′M)∗, t ′g−1, g)

µ̃r (tM∗, tg−1, g)
δt,hδt′,h′B

gM
tg−1,t′g−1 .)

Coproduct : ∆(Ba
b,b′) =

∑
x∈Irr(C)

Ba
b,x ⊗ Ba

x ,b′

Counit : ε(Ba
b,b′) = δb,b′

Antipode : S(Bs
x ,x ′) = f (x , x ′, s))Bs−1

x ′.s−1,x .s−1

S(BM
α,β) = g(α, β,M)BM∗

β,α
(s = s)
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Subfactors attached to Tambara-Yamagami fusion
categories

Here the structure of quantum groupoids and description of the
tower of type II1 subfactors associated with them, have already
been done

Theorem C. Mevel (10) T.Y. fusion categories give, for all
n ∈ N∗, a subfactors of the hyperfinite type II1 factor whose index
is (n +

√
n)2, and principal graphs is given by :

J.M. Vallin (On a joint work in progress with L.Vainerman ) Finite C∗-Quantum groupoids and subfactors coming from fusion categories



Subfactors attached to Tambara-Yamagami fusion
categories

Here the structure of quantum groupoids and description of the
tower of type II1 subfactors associated with them, have already
been done

Theorem C. Mevel (10)

T.Y. fusion categories give, for all
n ∈ N∗, a subfactors of the hyperfinite type II1 factor whose index
is (n +

√
n)2, and principal graphs is given by :

J.M. Vallin (On a joint work in progress with L.Vainerman ) Finite C∗-Quantum groupoids and subfactors coming from fusion categories



Subfactors attached to Tambara-Yamagami fusion
categories

Here the structure of quantum groupoids and description of the
tower of type II1 subfactors associated with them, have already
been done

Theorem C. Mevel (10) T.Y. fusion categories give, for all
n ∈ N∗, a subfactors of the hyperfinite type II1 factor whose index
is (n +

√
n)2

, and principal graphs is given by :

J.M. Vallin (On a joint work in progress with L.Vainerman ) Finite C∗-Quantum groupoids and subfactors coming from fusion categories



Subfactors attached to Tambara-Yamagami fusion
categories

Here the structure of quantum groupoids and description of the
tower of type II1 subfactors associated with them, have already
been done

Theorem C. Mevel (10) T.Y. fusion categories give, for all
n ∈ N∗, a subfactors of the hyperfinite type II1 factor whose index
is (n +

√
n)2, and principal graphs is given by :
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Intermediate subfactors

Theorem (10)

There exists at least two types of principal graphs of intermediate
subfactors associated with these Tambara-Yamagami categories
(n ∈ N, d |n) :

1*
1

n
d n

n+1

Case 2 : index = 1
d (n +

√
n)2

1*
2

d

Case 1 : index = d

If n is ”quadratfrei” these are exactly all possible principal graphs.
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The lattice of intermed. subfactors for S = Z/pZ and
S = Z/pqZ

B = J{0}

IG JG

Bt = I{0}

case S = Z/pZ

B

IG JZ/qZ JZ/pZ

IZ/pZ IZ/qZ JG

Bt

case S = Z/pqZ
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The lattice of intermediate subfactors for S = Z/pqrZ

M

IG

IZ/pqZ IZ/prZ IZ/qrZ

IZ/pZ IZ/qZ IZ/rZ

N

JZ/rZ JZ/qZ JZ/pZ

JZ/qrZ JZ/prZ JZ/pqZ

JG
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The lattice of intermediate subfactors for S = Z/pqrZ
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