Finite C^{*}-Quantum groupoids and subfactors coming from fusion categories

J.M. Vallin
(On a joint work in progress with L.Vainerman)

May. 22 2013, Dijon

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.
(i) $\Delta: A \rightarrow A \otimes A:(\Delta \otimes i) \Delta=(i \otimes \Delta) \Delta$
$(\Delta \otimes \mathrm{id}) \Delta(1)=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))$,

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.
(i) $\Delta: A \rightarrow A \otimes A:(\Delta \otimes i) \Delta=(i \otimes \Delta) \Delta$
$(\Delta \otimes \mathrm{id}) \Delta(1)=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))$,
(ii) $\epsilon: A \rightarrow \mathbb{C},(\epsilon \otimes i) \Delta=(i \otimes \epsilon) \Delta=i$
$\varepsilon(a b c)=\varepsilon\left(a b_{(1)}\right) \varepsilon\left(b_{(2)} c\right)=\varepsilon\left(a b_{(2)}\right) \varepsilon\left(b_{(1)} c\right), \forall a, b, c \in A$,
(here $\left.\Delta(b)=b_{(1)} \otimes b_{(2)}\right)$

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.
(i) $\Delta: A \rightarrow A \otimes A:(\Delta \otimes i) \Delta=(i \otimes \Delta) \Delta$
$(\Delta \otimes \mathrm{id}) \Delta(1)=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))$,
(ii) $\epsilon: A \rightarrow \mathbb{C},(\epsilon \otimes i) \Delta=(i \otimes \epsilon) \Delta=i$
$\varepsilon(a b c)=\varepsilon\left(a b_{(1)}\right) \varepsilon\left(b_{(2)} c\right)=\varepsilon\left(a b_{(2)}\right) \varepsilon\left(b_{(1)} c\right), \forall a, b, c \in A$,
(here $\left.\Delta(b)=b_{(1)} \otimes b_{(2)}\right)$
(iii) it exists $S: A \longrightarrow A$ a bialgebra anti-isomorphism s. t. :
$m($ id $\otimes S) \Delta(a)=\varepsilon\left(1_{(1)} b\right) 1_{(2)}$,
$m(S \otimes \mathrm{id}) \Delta(a)=1_{(1)} \varepsilon\left(b 1_{(2)}\right)$,
$S\left(a_{(1)}\right) a_{(2)} S\left(a_{(3)}\right)=S(a)$.

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.
(i) $\Delta: A \rightarrow A \otimes A:(\Delta \otimes i) \Delta=(i \otimes \Delta) \Delta$
$(\Delta \otimes \mathrm{id}) \Delta(1)=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))$,
(ii) $\epsilon: A \rightarrow \mathbb{C},(\epsilon \otimes i) \Delta=(i \otimes \epsilon) \Delta=i$
$\varepsilon(a b c)=\varepsilon\left(a b_{(1)}\right) \varepsilon\left(b_{(2)} c\right)=\varepsilon\left(a b_{(2)}\right) \varepsilon\left(b_{(1)} c\right), \forall a, b, c \in A$,
(here $\left.\Delta(b)=b_{(1)} \otimes b_{(2)}\right)$
(iii) it exists $S: A \longrightarrow A$ a bialgebra anti-isomorphism s. t. :
$m($ id $\otimes S) \Delta(a)=\varepsilon\left(1_{(1)} b\right) 1_{(2)}$,
$m(S \otimes \mathrm{id}) \Delta(a)=1_{(1)} \varepsilon\left(b 1_{(2)}\right)$,
$S\left(a_{(1)}\right) a_{(2)} S\left(a_{(3)}\right)=S(a)$.
$\Delta(1)=1 \otimes 1 \Longleftrightarrow \epsilon$ multip. $\Longleftrightarrow(A, \Delta, \epsilon, S)$ quantum group

Finite Quantum Groupoids

Definition (G.Böhm, F.Nill, K.Szlachányi, 95)

This is a finite dimensional bialgebra $(A, m, 1, \Delta, \epsilon)$ over \mathbb{C}, s.t.
(i) $\Delta: A \rightarrow A \otimes A:(\Delta \otimes i) \Delta=(i \otimes \Delta) \Delta$
$(\Delta \otimes \mathrm{id}) \Delta(1)=(1 \otimes \Delta(1))(\Delta(1) \otimes 1)=(\Delta(1) \otimes 1)(1 \otimes \Delta(1))$,
(ii) $\epsilon: A \rightarrow \mathbb{C},(\epsilon \otimes i) \Delta=(i \otimes \epsilon) \Delta=i$
$\varepsilon(a b c)=\varepsilon\left(a b_{(1)}\right) \varepsilon\left(b_{(2)} c\right)=\varepsilon\left(a b_{(2)}\right) \varepsilon\left(b_{(1)} c\right), \forall a, b, c \in A$,
(here $\left.\Delta(b)=b_{(1)} \otimes b_{(2)}\right)$
(iii) it exists $S: A \longrightarrow A$ a bialgebra anti-isomorphism s. t. :
$m($ id $\otimes S) \Delta(a)=\varepsilon\left(1_{(1)} b\right) 1_{(2)}$,
$m(S \otimes \mathrm{id}) \Delta(a)=1_{(1)} \varepsilon\left(b 1_{(2)}\right)$,
$S\left(a_{(1)}\right) a_{(2)} S\left(a_{(3)}\right)=S(a)$.
$\Delta(1)=1 \otimes 1 \Longleftrightarrow \epsilon$ multip. $\Longleftrightarrow(A, \Delta, \epsilon, S)$ quantum group
If A is a C^{*}-algebra s.t. $\Delta\left(a^{*}\right)=\Delta(a)^{*}: C^{*}$-Quantum Groupoid

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)$

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)\left(\left(a, \phi^{*}\right)=\overline{\left(S(a)^{*}, \phi\right)}\right)$

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)\left(\left(a, \phi^{*}\right)=\overline{\left(S(a)^{*}, \phi\right)}\right)$

Target and source counital maps and counital subalgebras
$\varepsilon_{t}(a)=m(\mathrm{id} \otimes S) \Delta(a), \quad \varepsilon_{s}(a)=m(S \otimes \mathrm{id}) \Delta(a), \forall a \in A$.

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)\left(\left(a, \phi^{*}\right)=\overline{\left(S(a)^{*}, \phi\right)}\right)$

Target and source counital maps and counital subalgebras
$\varepsilon_{t}(a)=m(\mathrm{id} \otimes S) \Delta(a), \quad \varepsilon_{s}(a)=m(S \otimes \mathrm{id}) \Delta(a), \forall a \in A$. $A_{t}:=\operatorname{Im}\left(\varepsilon_{t}\right)$ and $A_{s}: \operatorname{Im}\left(\varepsilon_{s}\right)$.

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)\left(\left(a, \phi^{*}\right)=\overline{\left(S(a)^{*}, \phi\right)}\right)$

Target and source counital maps and counital subalgebras
$\varepsilon_{t}(a)=m(\mathrm{id} \otimes S) \Delta(a), \quad \varepsilon_{s}(a)=m(S \otimes \mathrm{id}) \Delta(a), \forall a \in A$.
$A_{t}:=\operatorname{Im}\left(\varepsilon_{t}\right)$ and $A_{s}: \operatorname{Im}\left(\varepsilon_{s}\right)$.
A is said to be connected if $Z(A) \cap A_{t}=\mathbb{C} 1$, co-connected if $A_{t} \cap A_{s}=\mathbb{C} 1$ and biconnected if both conditions are satisfied.

The dual A^{*} is again a finite $\left(C^{*}\right)$-quantum groupoid :
$(a, \phi \cdot \psi)=(\Delta(a), \phi \otimes \psi),\left(a \otimes a^{\prime}, \hat{\Delta}(\phi)\right)=\left(a a^{\prime}, \phi\right)$
$(a, \hat{S}(\psi))=(S(a), \psi), \hat{\epsilon}(\phi)=(1, \phi)\left(\left(a, \phi^{*}\right)=\overline{\left(S(a)^{*}, \phi\right)}\right)$

Target and source counital maps and counital subalgebras
$\varepsilon_{t}(a)=m(\mathrm{id} \otimes S) \Delta(a), \quad \varepsilon_{s}(a)=m(S \otimes \mathrm{id}) \Delta(a), \forall a \in A$.
$A_{t}:=\operatorname{Im}\left(\varepsilon_{t}\right)$ and $A_{s}: \operatorname{Im}\left(\varepsilon_{s}\right)$.
A is said to be connected if $Z(A) \cap A_{t}=\mathbb{C} 1$, co-connected if $A_{t} \cap A_{s}=\mathbb{C} 1$ and biconnected if both conditions are satisfied.
A is regular if $S_{\mid A_{t}}^{2}=1$.

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid
Finite Groupoid Algebra

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid
Finite Groupoid Algebra
The $*$-algebra : $\mathbb{C} \mathcal{G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C} \mathcal{G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product : gh if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$,

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid: (i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C} \mathcal{G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product : $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid:

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C} \mathcal{G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid :
(i) $\Delta: A=C(\mathcal{G}) \rightarrow A \otimes A=C(\mathcal{G} \times \mathcal{G})$

$$
\Delta(f)(g, h)=\left\{\begin{array}{l}
f(g h) \text { if } g, h \text { are composable } \\
0 \text { otherwise }
\end{array}\right.
$$

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid :
(i) $\Delta: A=C(\mathcal{G}) \rightarrow A \otimes A=C(\mathcal{G} \times \mathcal{G})$

$$
\Delta(f)(g, h)=\left\{\begin{array}{l}
f(g h) \text { if } g, h \text { are composable } \\
0 \text { otherwise }
\end{array}\right.
$$

(ii) $S(f)(g)=f\left(g^{-1}\right)$,

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid :
(i) $\Delta: A=C(\mathcal{G}) \rightarrow A \otimes A=C(\mathcal{G} \times \mathcal{G})$

$$
\Delta(f)(g, h)=\left\{\begin{array}{l}
f(g h) \text { if } g, h \text { are composable } \\
0 \text { otherwise }
\end{array}\right.
$$

(ii) $S(f)(g)=f\left(g^{-1}\right), f^{*}(g)=\overline{f(g)}$

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid :
(i) $\Delta: A=C(\mathcal{G}) \rightarrow A \otimes A=C(\mathcal{G} \times \mathcal{G})$

$$
\Delta(f)(g, h)=\left\{\begin{array}{l}
f(g h) \text { if } g, h \text { are composable } \\
0 \text { otherwise }
\end{array}\right.
$$

(ii) $S(f)(g)=f\left(g^{-1}\right), f^{*}(g)=\overline{f(g)}$
(iii) $\varepsilon(f)=\sum_{u \in \mathcal{G}^{0}} f(u)$,

Symmetric $(\sigma \circ \Delta=\Delta)$ and abelian Quantum Groupoids

Let \mathcal{G} be a finite groupoid

Finite Groupoid Algebra

The $*$-algebra : $\mathbb{C G}=\operatorname{Vect}\{g \mid g \in \mathcal{G}\}$ is a C^{*}-quantum groupoid :
(i) product: $g h$ if g and h are composable, 0 otherwise, $g^{*}=g^{-1}$
(ii) $\Delta(g)=g \otimes g$,
(iii) $S(g)=g^{-1}$.
(iv) $\varepsilon(g)=1$, the counital maps : $\varepsilon_{t}(g)=g g^{-1}, \varepsilon_{s}(g)=g^{-1} g$.

Fonctions on Finite Groupoid

The $*$-algebra: $C(\mathcal{G})=\{f: \mathcal{G} \rightarrow \mathbb{C}\}$ is a C^{*}-quantum groupoid :
(i) $\Delta: A=C(\mathcal{G}) \rightarrow A \otimes A=C(\mathcal{G} \times \mathcal{G})$

$$
\Delta(f)(g, h)=\left\{\begin{array}{l}
f(g h) \text { if } g, h \text { are composable } \\
0 \text { otherwise }
\end{array}\right.
$$

(ii) $S(f)(g)=f\left(g^{-1}\right), f^{*}(g)=\overline{f(g)}$
(iii) $\varepsilon(f)=\sum_{u \in \mathcal{G}^{0}} f(u), \varepsilon_{t}\left(\delta_{g}\right)=\sum_{v^{-1}=g} \delta_{v}, \varepsilon_{s}\left(\delta_{g}\right)=\sum_{v^{-1} v=g} \delta_{v}$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$

Subfactors and Jones tower

M von Neumann algebra : unital *- subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Subfactors and Jones tower

M von Neumann algebra : unital *- subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$
Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]$

Subfactors and Jones tower

M von Neumann algebra : unital *- subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$
Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
M_{0} \subset M_{1}
$$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$
Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2}
$$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$
Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
M_{0} \subset M_{1} \subset M_{2} \stackrel{e_{1}}{\subset} M_{3} \subset \ldots
$$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$
I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$
Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower }
$$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$ I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
\begin{gathered}
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower } \\
{\left[M_{1}: M_{0}\right]=\left[M_{k}: M_{k-1}\right] \in\left\{4 \cos ^{2} \frac{\pi}{n}, n \geq 3\right\} \cup[4,+\infty[.}
\end{gathered}
$$

Subfactors and Jones tower

M von Neumann algebra: unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$ I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
\begin{gathered}
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower } \\
{\left[M_{1}: M_{0}\right]=\left[M_{k}: M_{k-1}\right] \in\left\{4 \cos ^{2} \frac{\pi}{n}, n \geq 3\right\} \cup[4,+\infty[.} \\
\text { Derived tower : } M_{0}^{\prime} \cap M_{1} \subset M_{0}^{\prime} \cap M_{2} \subset M_{0}^{\prime} \cap M_{3} \subset \ldots
\end{gathered}
$$

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$ I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
\begin{gathered}
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower } \\
{\left[M_{1}: M_{0}\right]=\left[M_{k}: M_{k-1}\right] \in\left\{4 \cos ^{2} \frac{\pi}{n}, n \geq 3\right\} \cup[4,+\infty[.} \\
\text { Derived tower : } M_{0}^{\prime} \cap M_{1} \subset M_{0}^{\prime} \cap M_{2} \subset M_{0}^{\prime} \cap M_{3} \subset \ldots
\end{gathered}
$$

Depth k - basic construction in the last tower from step k.

Subfactors and Jones tower

M von Neumann algebra : unital $*$ - subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$ I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
\begin{gathered}
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower } \\
{\left[M_{1}: M_{0}\right]=\left[M_{k}: M_{k-1}\right] \in\left\{4 \cos ^{2} \frac{\pi}{n}, n \geq 3\right\} \cup[4,+\infty[.} \\
\text { Derived tower : } M_{0}^{\prime} \cap M_{1} \subset M_{0}^{\prime} \cap M_{2} \subset M_{0}^{\prime} \cap M_{3} \subset \ldots
\end{gathered}
$$

Depth k - basic construction in the last tower from step k.

Example : outer group actions

$$
M^{G} \subset M \subset M \rtimes G \subset(M \rtimes G) \rtimes \hat{G} \ldots-\text { depth } 2 .
$$

Subfactors and Jones tower

M von Neumann algebra : unital *- subalg.of $\mathcal{L}(H), M=M^{\prime \prime}$ I_{1} factor: $Z(M)=\mathbb{C} 1, \exists \tau \in M^{*}, \tau\left(x^{*} x\right) \geq 0, \tau(x y)=\tau(y x)$

Basic construction for $M_{0} \subset M_{1},\left[M_{1}: M_{0}\right]<\infty$,

$$
\begin{gathered}
M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \subset \ldots: \text { Jones tower } \\
{\left[M_{1}: M_{0}\right]=\left[M_{k}: M_{k-1}\right] \in\left\{4 \cos ^{2} \frac{\pi}{n}, n \geq 3\right\} \cup[4,+\infty[.} \\
\text { Derived tower : } M_{0}^{\prime} \cap M_{1} \subset M_{0}^{\prime} \cap M_{2} \subset M_{0}^{\prime} \cap M_{3} \subset \ldots
\end{gathered}
$$

Depth k - basic construction in the last tower from step k.
Example : outer group actions

$$
M^{G} \subset M \subset M \rtimes G \subset(M \rtimes G) \rtimes \hat{G} \ldots-\text { depth } 2 .
$$

Galois correspondence : $M^{G} \subset K \subset M \Leftrightarrow$ subgroups of G.

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m$, w-cont., s.t. :

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by A :

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$
Fixed point subalgebra

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$
Fixed point subalgebra : $M^{A}=\left\{m / \forall a \in A, a \triangleright m=\varepsilon_{t}(a) \triangleright m\right\}$

\mathbb{C}^{*}-quantum groupoid actions on von Neumann algebras

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m, w-c o n t$, , s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$
Fixed point subalgebra: $M^{A}=\left\{m / \forall a \in A, a \triangleright m=\varepsilon_{t}(a) \triangleright m\right\}$

$$
M^{A} \subset M \subset M \rtimes A: \quad \text { depth } 2
$$

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m$, w-cont., s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$
Fixed point subalgebra : $M^{A}=\left\{m / \forall a \in A, a \triangleright m=\varepsilon_{t}(a) \triangleright m\right\}$

$$
M^{A} \subset M \subset M \rtimes A: \text { depth } 2
$$

An action is said to be outer if $M^{\prime} \cap(M \rtimes A)=Z(M) \rtimes A_{s}$.

Definitions An action of $(A, \Delta, S, \varepsilon)$ on a von Neumann algebra $M: A \otimes M \rightarrow M, a \otimes m \mapsto a \triangleright m$, w-cont., s.t. :

- $a \triangleright x y=\left(a_{(1)} \triangleright x\right)\left(a_{(2)} \triangleright y\right)$
- $(a \triangleright x)^{*}=S(a)^{*} \triangleright x^{*}$
- $a \triangleright 1=\varepsilon_{t}(a) \triangleright 1$ and $a \triangleright 1=0$ iff $\varepsilon_{t}(a)=0$

Crossed product of M by $A: M \rtimes A=M \underset{A_{t}}{\otimes} A$:
$\forall z \in A_{t} \quad m(z \triangleright 1) \otimes a \equiv m \otimes z a$
$[m \otimes a][n \otimes b]=\left[m\left(a_{(1)} \triangleright n\right) \otimes a_{(2)} b\right], \quad[m \otimes a]^{*}=\left[a_{(1)}^{*} \triangleright m^{*} \otimes a_{(2)}^{*}\right]$
Fixed point subalgebra : $M^{A}=\left\{m / \forall a \in A, a \triangleright m=\varepsilon_{t}(a) \triangleright m\right\}$

$$
M^{A} \subset M \subset M \rtimes A: \text { depth } 2
$$

An action is said to be outer if $M^{\prime} \cap(M \rtimes A)=Z(M) \rtimes A_{s}$. Any biconnected regular \mathbb{C}^{*}-quantum groupoid has an outer action on the hyperfinite type I_{1} factor (M.-C. David).

Subfactors and Finite Quantum Groupoids

Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)

Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)
 Let $M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. be a
 Jones tower of type I_{1} factors of finite index and depth 2 , then :

Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)

Let $M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. be a Jones tower of type I_{1} factors of finite index and depth 2 , then :

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$ are biconnected C^{*}-quantum groupoids in duality

Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)

Let $M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. be a Jones tower of type I_{1} factors of finite index and depth 2 , then :

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$ are biconnected C^{*}-quantum groupoids in duality
- B acts outerly on M_{2} and $M_{1}=M_{2}^{B}, \quad M_{3} \cong M_{2} \rtimes B$
- $\left[M_{k}: M_{k-1}\right]=\left[B: B_{t}\right]$

Subfactors and Finite Quantum Groupoids

Theorem (D.Nikshych-L.Vainerman 00)

Let $M_{0} \subset M_{1} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots$. be a Jones tower of type I_{1} factors of finite index and depth 2 , then :

- $A=M_{0}^{\prime} \cap M_{2}, B=M_{1}^{\prime} \cap M_{3}$ are biconnected C^{*}-quantum groupoids in duality
- B acts outerly on M_{2} and $M_{1}=M_{2}^{B}, \quad M_{3} \cong M_{2} \rtimes B$
- $\left[M_{k}: M_{k-1}\right]=\left[B: B_{t}\right]$

Galois correspondence :

Left coideal $*$-subalgebra $: I \subset B$ s.t $\Delta(I) \subset B \otimes I$.

Galois correspondence :

Left coideal $*$-subalgebra $: I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product: $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

Galois correspondence :

Left coideal $*$-subalgebra : $I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product : $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

- Intermediate vN subalgebras: $M_{2} \subset K \subset M_{3}$ $\left(K \vee L=(K \cup L)^{\prime \prime}, K \wedge L=K \cap L\right)$

Galois correspondence :

Left coideal $*$-subalgebra : $I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product : $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

- Intermediate vN subalgebras: $M_{2} \subset K \subset M_{3}$ $\left(K \vee L=(K \cup L)^{\prime \prime}, K \wedge L=K \cap L\right)$
- Left coideal $*$-subalgebras of B

$$
\left(I \vee J=(I \cup J)^{\prime \prime}, I \wedge J=I \cap J\right)
$$

Galois correspondence :

Left coideal $*$-subalgebra : $I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product : $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

- Intermediate vN subalgebras: $M_{2} \subset K \subset M_{3}$

$$
\left(K \vee L=(K \cup L)^{\prime \prime}, K \wedge L=K \cap L\right)
$$

- Left coideal $*$-subalgebras of B

$$
\left(I \vee J=(I \cup J)^{\prime \prime}, I \wedge J=I \cap J\right)
$$

are isomorphic

Galois correspondence :

Left coideal $*$-subalgebra : $I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product : $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

- Intermediate vN subalgebras: $M_{2} \subset K \subset M_{3}$

$$
\left(K \vee L=(K \cup L)^{\prime \prime}, K \wedge L=K \cap L\right)
$$

- Left coideal $*$-subalgebras of B

$$
\left(I \vee J=(I \cup J)^{\prime \prime}, I \wedge J=I \cap J\right)
$$

are isomorphic :

$$
K \mapsto M_{1}^{\prime} \cap K \subset B, \quad I \mapsto M_{2} \rtimes I \subset M_{3}
$$

Galois correspondence :

Left coideal $*$-subalgebra $: I \subset B$ s.t $\Delta(I) \subset B \otimes I$.
Crossed product : $M \rtimes I=\operatorname{span}\{[m \otimes b] \mid m \in M, b \in I\} \subset M \rtimes B$,

Two Lattices :

- Intermediate vN subalgebras: $M_{2} \subset K \subset M_{3}$

$$
\left(K \vee L=(K \cup L)^{\prime \prime}, K \wedge L=K \cap L\right)
$$

- Left coideal $*$-subalgebras of B

$$
\left(I \vee J=(I \cup J)^{\prime \prime}, I \wedge J=I \cap J\right)
$$

are isomorphic :

$$
K \mapsto M_{1}^{\prime} \cap K \subset B, \quad I \mapsto M_{2} \rtimes I \subset M_{3}
$$

K is a factor iff I is connected.

Characterization of finite index and depth subfactors

Characterization of finite index and depth subfactors

Observation (S. Popa) :

$$
\underbrace{M_{0} \subset M_{1}}_{\text {depth } n}
$$

Characterization of finite index and depth subfactors

Observation (S. Popa) :

$$
\underbrace{\underbrace{M_{0} \subset M_{1}}_{\text {depth } n} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots . \subset M_{n-1}}_{\text {depth } 2}
$$

Characterization of finite index and depth subfactors

Observation (S. Popa) :

$$
\underbrace{\underbrace{M_{0} \subset M_{1}}_{\text {depth } n} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots \subset \subset M_{n-1}}_{\text {depth } 2}
$$

M_{1} corresponds to a left coideal I of a quantum groupoid B

Characterization of finite index and depth subfactors

Observation (S. Popa) :

$$
\underbrace{\underbrace{M_{0} \subset M_{1}}_{\text {depth } n} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots . \subset M_{n-1}}_{\text {depth } 2}
$$

M_{1} corresponds to a left coideal I of a quantum groupoid B

Equivalence of Tensor categories

Characterization of finite index and depth subfactors

Observation (S. Popa) :

$$
\underbrace{\underbrace{M_{0} \subset M_{1}}_{\text {depth } n} \stackrel{e_{1}}{\subset} M_{2} \stackrel{e_{2}}{\subset} M_{3} \ldots \ldots \subset M_{n-1}}_{\text {depth } 2}
$$

M_{1} corresponds to a left coideal I of a quantum groupoid B

Equivalence of Tensor categories

- $\operatorname{Bimod}_{M_{0}-M_{0}}$ with tensor product $\otimes_{M_{0}}$
- $\operatorname{Rep}\left(B^{*}\right)$: finite rank B^{*}-modules with tensor product :
$V \boxtimes W=\Delta(1)(V \otimes W),\left(b \cdot(v \boxtimes w)=b_{(1)} \cdot v \boxtimes b_{(2)} \cdot w\right)$

Fusion categories

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, \ldots, r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

Fusion categories

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, \ldots, r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition
Example. $\mathcal{C}=\operatorname{Vec}_{S}^{\omega}$, where ω is a 3-cocycle on a finite group S

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition
Example. $\mathcal{C}=\operatorname{Vec}_{S}^{\omega}$, where ω is a 3-cocycle on a finite group S : simple objects $g, h, k \in S$

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition
Example. $\mathcal{C}=\operatorname{Vec}_{S}^{\omega}$, where ω is a 3-cocycle on a finite group S : simple objects $g, h, k \in S$, fusion rule $g \otimes h=g h$,

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad(\text { fusion rule }) \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition
Example. $\mathcal{C}=\operatorname{Vec}_{S}^{\omega}$, where ω is a 3-cocycle on a finite group S : simple objects $g, h, k \in S$, fusion rule $g \otimes h=g h$, duality $g^{*}=g^{-1}$,

A Fusion category is a finite rigid semisimple tensor category \mathcal{C}, with duality, finitely many (classes of) simple objects $\left(V_{i}\right)_{i=1, . ., r k(\mathcal{C})}$ and finite dimensional Hom-spaces :

$$
V_{i} \otimes V_{j}=\underset{k}{\oplus} N_{i j}^{k} V_{k} \quad \text { (fusion rule) } \quad \text { and } \quad \mathbf{1}=V_{i_{0}}
$$

Associativity isomorphisms :

$$
\alpha\left(V_{i}, V_{j}, V_{k}\right):\left(V_{i} \otimes V_{j}\right) \otimes V_{k} \mapsto V_{i} \otimes\left(V_{j} \otimes V_{k}\right)
$$

satisfying the Pentagon condition
Example. $\mathcal{C}=\operatorname{Vec}_{S}^{\omega}$, where ω is a 3-cocycle on a finite group S : simple objects $g, h, k \in S$, fusion rule $g \otimes h=g h$, duality $g^{*}=g^{-1}, \alpha(g, h, k)=\omega(g, h, k) / d_{g h k}$.

Spherical fusion categories

A fusion category \mathcal{C} is pivotal

Spherical fusion categories

A fusion category \mathcal{C} is pivotal if for any object x in \mathcal{C} it exists an isomorphism $a_{x}: x \rightarrow x^{* *}$ natural in x s.t. for all object y in \mathcal{C} :

$$
a_{x \otimes y}=a_{x} \otimes a_{y}
$$

Spherical fusion categories

A fusion category \mathcal{C} is pivotal if for any object x in \mathcal{C} it exists an isomorphism $a_{x}: x \rightarrow x^{* *}$ natural in x s.t. for all object y in \mathcal{C} :

$$
a_{x \otimes y}=a_{x} \otimes a_{y}
$$

A pivotal category \mathcal{C} is spherical

Spherical fusion categories

A fusion category \mathcal{C} is pivotal if for any object x in \mathcal{C} it exists an isomorphism $a_{x}: x \rightarrow x^{* *}$ natural in x s.t. for all object y in \mathcal{C} :

$$
a_{x \otimes y}=a_{x} \otimes a_{y}
$$

A pivotal category \mathcal{C} is spherical if for any $x \in \operatorname{Irr}(\mathcal{C})$ one has :

$$
\operatorname{dim}_{a}(x)=\operatorname{dim}_{a}\left(x^{*}\right)
$$

$\left(\operatorname{dim}_{a}(x)=\operatorname{Tr}\left(a_{x}\right)=e v_{x^{*}} \circ\left(a_{x} \otimes I d_{x^{*}}\right) \circ \operatorname{coev}_{x}\right.$ in $\left.\operatorname{Hom}(1,1)\right)$

Reconstruction theorem

Reconstruction theorem

Theorem (H.Pfeiffer 08

Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)

Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)
 Given spherical fusion category \mathcal{C},

Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)

Given spherical fusion category \mathcal{C}, there is a canonical self dual regular biconnected quantum groupoid B

Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)

Given spherical fusion category \mathcal{C}, there is a canonical self dual regular biconnected quantum groupoid B with commutative $B_{t} \simeq B_{s} \simeq \mathbb{C}^{r k(\mathcal{C})}$ such that $\mathcal{C} \simeq \operatorname{Rep}(B)$.

Reconstruction theorem

Theorem (H.Pfeiffer 08, P.Schauenberg 92)

Given spherical fusion category \mathcal{C}, there is a canonical self dual regular biconnected quantum groupoid B with commutative $B_{t} \simeq B_{s} \simeq \mathbb{C}^{r k(\mathcal{C})}$ such that $\mathcal{C} \simeq \operatorname{Rep}(B)$.

Our aim is to apply this to $\mathbb{Z} / 2 \mathbb{Z}$ - extensions of pointed fusion categories in order to construct and analyze the subfactors associated with them

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of pointed fusion categories

$$
\begin{gathered}
\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1} \quad\left(\mathcal{C}_{0}=\operatorname{Vec}_{S}^{\omega}\right) \\
\mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a+b}, \quad a, b \in \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of pointed fusion categories

$$
\begin{gathered}
\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1} \quad\left(\mathcal{C}_{0}=\operatorname{Vec}_{S}^{\omega}\right) \\
\mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a+b}, a, b \in \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

Theorem (V^{2}) :

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of pointed fusion categories

$$
\begin{gathered}
\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1} \quad\left(\mathcal{C}_{0}=\operatorname{Vec}_{S}^{\omega}\right) \\
\mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a+b}, a, b \in \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

Theorem (V^{2}) :

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\operatorname{Vec}_{S}^{\omega}$ are parametrized by tuples

$$
\left(A, \tau, \varepsilon, \stackrel{\delta}{\delta}, \chi, \mu^{r}, \psi, \nu\right)
$$

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of pointed fusion categories

$$
\begin{gathered}
\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1} \quad\left(\mathcal{C}_{0}=\operatorname{Vec}_{S}^{\omega}\right) \\
\mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a+b}, a, b \in \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

Theorem (V^{2}):

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\operatorname{Vec}_{S}^{\omega}$ are parametrized by tuples

$$
\left(A, \tau, \varepsilon, \delta, \chi, \mu^{r}, \psi, \nu\right)
$$

- $A \triangleleft S, A$ is abelian $\neq\{e\}, \tau= \pm|A|^{-1 / 2}, \varepsilon \in \operatorname{Aut}(S / A)$, $\delta \in S / A$ s.t. $\varepsilon^{2}=\operatorname{Ad}(\delta), \varepsilon(\delta)=\delta,\left(\operatorname{BrPic}\left(\operatorname{Vec}_{S}^{\omega}\right)\right)_{(A, \varepsilon)} \neq \emptyset$

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of pointed fusion categories

$$
\begin{gathered}
\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1} \quad\left(\mathcal{C}_{0}=\operatorname{Vec}_{S}^{\omega}\right) \\
\mathcal{C}_{a} \otimes \mathcal{C}_{b} \subset \mathcal{C}_{a+b}, \quad a, b \in \mathbb{Z} / 2 \mathbb{Z}
\end{gathered}
$$

Theorem (V^{2}) :

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\operatorname{Vec}_{S}^{\omega}$ are parametrized by tuples

$$
\left(A, \tau, \varepsilon, \stackrel{\diamond}{\delta}, \chi, \mu^{r}, \psi, \nu\right)
$$

- $A \triangleleft S, A$ is abelian $\neq\{e\}, \tau= \pm|A|^{-1 / 2}, \varepsilon \in \operatorname{Aut}(S / A)$, $\delta \in S / A$ s.t. $\varepsilon^{2}=\operatorname{Ad}(\delta), \varepsilon(\delta)=\delta,\left(\operatorname{BrPic}\left(\operatorname{Vec}_{S}^{\omega}\right)\right)_{(A, \varepsilon)} \neq \emptyset$
- χ non deg. bichar. on $A, \mu^{r} \in C^{2}\left(A, \mathbb{C}^{X}\right)$, $\psi \in Z^{1}\left(S / A, F u n\left(A \times A, \mathbb{C}^{\times}\right)\right), \nu \in C^{2}\left(S / A, \mathbb{C}^{\times}\right)$s.t it exists adeq.inductions :

$$
\tilde{\chi}: S \times S / A \times S \rightarrow \mathbb{C}^{X}, \tilde{\mu}^{r}: S / A \times S \times S \rightarrow \mathbb{C}^{X}
$$

Example $A=S$: Tambara-Yamagami fusion categories

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec} S_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha(K, x, y)=\left[\tilde{\mu}^{r}(K, x, y)\right]^{-1} i d_{K x y}$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha(K, x, y)=\left[\tilde{\mu}^{r}(K, x, y)\right]^{-1} i d_{K x y}$
- $\alpha(x, K, y)=\tilde{\chi}(x, K, y) i d_{x K y}$
- $\alpha(x, y, K)=\tilde{\mu}^{r}\left((x y K)^{*}, x, y\right) i d_{x y K}$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha(K, x, y)=\left[\tilde{\mu}^{r}(K, x, y)\right]^{-1} i d_{K x y}$
- $\alpha(x, K, y)=\tilde{\chi}(x, K, y) i d_{x K y}$
- $\alpha(x, y, K)=\tilde{\mu}^{r}\left((x y K)^{*}, x, y\right) i d_{x y K}$
- $\alpha(x, K, L)=\oplus_{K=s L^{*}}\left[\tilde{\mu}^{r}\left(K^{*} x^{-1}, x, s\right)\right]^{-1} i d_{x s}$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha(K, x, y)=\left[\tilde{\mu}^{r}(K, x, y)\right]^{-1} i d_{K x y}$
- $\alpha(x, K, y)=\tilde{\chi}(x, K, y) i d_{x K y}$
- $\alpha(x, y, K)=\tilde{\mu}^{r}\left((x y K)^{*}, x, y\right) i d_{x y K}$
- $\alpha(x, K, L)=\oplus_{K=s L^{*}}\left[\tilde{\mu}^{r}\left(K^{*} x^{-1}, x, s\right)\right]^{-1} i d_{x s}$
- $\alpha(K, L, x)=\oplus_{K=s L^{*}} \tilde{\mu}^{r}\left(K^{*}, s, x\right) i d_{s x}$
- $\alpha(K, x, L)=\oplus_{K x=s L^{*}} \tilde{\chi}\left(s,(x L)^{*}, x\right) i d_{s}$

The associativity isomorphisms

One can express $\alpha(X, Y, Z)$ for $\mathcal{C}=\mathcal{C}_{0} \oplus \mathcal{C}_{1}$ in terms of $\tilde{\mu}^{r}, \tilde{\chi}, \tau$

Theorem (V^{2}) :

The $\mathbb{Z} / 2 \mathbb{Z}$-graded extension of $\operatorname{Vec}_{S}^{\omega}$ given by $\left(A, \tilde{\mu}^{r}, \tilde{\chi}, \tau\right)$ has the following associativity isomorphisms :

- $\alpha(x, y, z)=\omega(x, y, z) i d_{x y z}$
- $\alpha(K, x, y)=\left[\tilde{\mu}^{r}(K, x, y)\right]^{-1} i d_{K x y}$
- $\alpha(x, K, y)=\tilde{\chi}(x, K, y) i d_{x K y}$
- $\alpha(x, y, K)=\tilde{\mu}^{r}\left((x y K)^{*}, x, y\right) i d_{x y K}$
- $\alpha(x, K, L)=\oplus_{K=s L^{*}}\left[\tilde{\mu}^{r}\left(K^{*} x^{-1}, x, s\right)\right]^{-1} i d_{x s}$
- $\alpha(K, L, x)=\oplus_{K=s L^{*}} \tilde{\mu}^{r}\left(K^{*}, s, x\right) i d_{s x}$
- $\alpha(K, x, L)=\oplus_{K x=s L^{*}} \tilde{\chi}\left(s,(x L)^{*}, x\right) i d_{s}$
- $\alpha(K, L, M)=$ the matrix $\left(\tau \tilde{\chi}^{-1}\left(s, L^{*}, t\right) i d_{s M}\right)_{K=s L^{*} ; L=t M^{*}}$

The Structure of B

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical

The Structure of B

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :
The Perron Frobenius dimension of \mathcal{C} is $2|S|$ (an integer)

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :
The Perron Frobenius dimension of \mathcal{C} is $2|S|$ (an integer) Pivotal structure :

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :
The Perron Frobenius dimension of \mathcal{C} is $2|S|$ (an integer) Pivotal structure :
$a_{s}=I d_{s}$ for $s \in S=\operatorname{Irr}\left(\mathcal{C}_{0}\right)$

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :
The Perron Frobenius dimension of \mathcal{C} is $2|S|$ (an integer) Pivotal structure :

$$
\begin{aligned}
& a_{s}=I d_{s} \text { for } s \in S=\operatorname{Irr}\left(\mathcal{C}_{0}\right) \\
& a_{M}=\operatorname{sign}(\tau) I d_{M} \text { for } M \in S / A=\operatorname{Irr}\left(\mathcal{C}_{1}\right)
\end{aligned}
$$

Proposition

$\mathbb{Z} / 2 \mathbb{Z}$-graded extensions of $\mathrm{Vec}_{S}^{\omega}$ are spherical
Demonstration :
The Perron Frobenius dimension of \mathcal{C} is $2|S|$ (an integer) Pivotal structure :

$$
\begin{aligned}
& a_{s}=\operatorname{Id} d_{s} \text { for } s \in S=\operatorname{Irr}\left(\mathcal{C}_{0}\right) \\
& a_{M}=\operatorname{sign}(\tau) \operatorname{Id}_{M} \text { for } M \in S / A=\operatorname{Irr}\left(\mathcal{C}_{1}\right) \\
& \operatorname{dim}_{a}(s)=1, \operatorname{dim}_{a}(M)=\sqrt{|A|}
\end{aligned}
$$

The Structure of B using reconstruction theorem

The Structure of B using reconstruction theorem

Proposition (V^{2})

Let B be the quantum groupoid obtained by reconstruction, $\mathrm{n}=$ $|S|, n^{\prime}=|A|$ and $m=n / n^{\prime}=|S / A|$,

The Structure of B using reconstruction theorem

Proposition (V^{2})

Let B be the quantum groupoid obtained by reconstruction, $\mathrm{n}=$ $|S|, n^{\prime}=|A|$ and $m=n / n^{\prime}=|S / A|$, then :

$$
B \simeq M_{n+m}(\mathbb{C})^{n} \oplus M_{2 n}(\mathbb{C})^{m}
$$

Proposition (V^{2})

Let B be the quantum groupoid obtained by reconstruction, $\mathrm{n}=$ $|S|, n^{\prime}=|A|$ and $m=n / n^{\prime}=|S / A|$, then :

$$
B \simeq M_{n+m}(\mathbb{C})^{n} \oplus M_{2 n}(\mathbb{C})^{m}
$$

ii) inclusion matrix of $B_{t} \subset B:\left(\begin{array}{cc}1_{n, n} & 1_{n, m} \\ 1_{m, n} & n^{\prime} 1_{m, m},\end{array}\right) \in M_{n+m}(\mathbb{C})$ $1_{p, q} \in M_{p, q}(\mathbb{C})($ all coeff. $=1)$.

Proposition (V^{2})

Let B be the quantum groupoid obtained by reconstruction, $\mathrm{n}=$ $|S|, n^{\prime}=|A|$ and $m=n / n^{\prime}=|S / A|$, then :

$$
B \simeq M_{n+m}(\mathbb{C})^{n} \oplus M_{2 n}(\mathbb{C})^{m}
$$

ii) inclusion matrix of $B_{t} \subset B:\left(\begin{array}{cc}1_{n, n} & 1_{n, m} \\ 1_{m, n} & n^{\prime} 1_{m, m},\end{array}\right) \in M_{n+m}(\mathbb{C})$ $1_{p, q} \in M_{p, q}(\mathbb{C})($ all coeff. $=1)$.
iii) One has : $\left[B: B_{t}\right]=(n+\sqrt{n m})^{2}=\gamma^{2}$.

Bratelli's diagramm for $B_{t} \subset B$

The co-structure of B using reconstruction theorem

One can define a basis of B

The co-structure of B using reconstruction theorem

One can define a basis of B :

The co-structure of B using reconstruction theorem

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$

The co-structure of B using reconstruction theorem

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$
$\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}$

The co-structure of B using reconstruction theorem

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$
$\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}$
Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)

One can define a basis of B :

$$
\begin{aligned}
& \mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right) \\
& \\
& \quad\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}
\end{aligned}
$$

Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)

$$
\left(B_{t, t^{\prime}}^{g} \cdot B_{h, h^{\prime}}^{M}=\frac{\tilde{\mu}^{r}\left(\left(t^{\prime} M\right)^{*}, t^{\prime} g^{-1}, g\right)}{\tilde{\mu}^{r}\left(t M^{*}, \operatorname{tg}^{-1}, g\right)} \delta_{t, h} \delta_{t^{\prime}, h^{\prime}} B_{t g^{-1}, t^{\prime} g^{-1}}^{g M}\right)
$$

One can define a basis of B :

$$
\begin{aligned}
& \mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right) \\
& \\
& \quad\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}
\end{aligned}
$$

Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)
$\left(B_{t, t^{\prime}}^{g} \cdot B_{h, h^{\prime}}^{M}=\frac{\tilde{\mu}^{r}\left(\left(t^{\prime} M\right)^{*}, t^{\prime} g^{-1}, g\right)}{\tilde{\mu}^{r}\left(t M^{*}, \operatorname{tg}^{-1}, g\right)} \delta_{t, h} \delta_{t^{\prime}, h^{\prime}} B_{t g^{-1}, t^{\prime} g^{-1}}^{g M}.\right)$
Coproduct : $\Delta\left(B_{b, b^{\prime}}^{a}\right)=\sum_{x \in \operatorname{lrr}(\mathcal{C})} B_{b, x}^{a} \otimes B_{x, b^{\prime}}^{a}$

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$
$\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}$
Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)
$\left(B_{t, t^{\prime}}^{g} \cdot B_{h, h^{\prime}}^{M}=\frac{\tilde{\mu}^{r}\left(\left(t^{\prime} M\right)^{*}, t^{\prime} g^{-1}, g\right)}{\tilde{\mu}^{r}\left(t M^{*}, t g^{-1}, g\right)} \delta_{t, h} \delta_{t^{\prime}, h^{\prime}} B_{t g^{-1}, t^{\prime} g^{-1}}^{g M}.\right)$
Coproduct : $\Delta\left(B_{b, b^{\prime}}^{a}\right)=\sum_{x \in \operatorname{lrr}(\mathcal{C})} B_{b, x}^{a} \otimes B_{x, b^{\prime}}^{a}$
Counit: $\epsilon\left(B_{b, b^{\prime}}^{a}\right)=\delta_{b, b^{\prime}}$

The co-structure of B using reconstruction theorem

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$
$\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}$
Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)
$\left(B_{t, t^{\prime}}^{g} \cdot B_{h, h^{\prime}}^{M}=\frac{\tilde{\mu}^{r}\left(\left(t^{\prime} M\right)^{*}, t^{\prime} g^{-1}, g\right)}{\tilde{\mu}^{r}\left(t M^{*}, t g^{-1}, g\right)} \delta_{t, h} \delta_{t^{\prime}, h^{\prime}} B_{t g^{-1}, t^{\prime} g^{-1}}^{g M}.\right)$
Coproduct : $\Delta\left(B_{b, b^{\prime}}^{a}\right)=\sum_{x \in \operatorname{lrr}(\mathcal{C})} B_{b, x}^{a} \otimes B_{x, b^{\prime}}^{a}$
Counit: $\epsilon\left(B_{b, b^{\prime}}^{a}\right)=\delta_{b, b^{\prime}}$
Antipode : $\left.\mathcal{S}\left(B_{x, x^{\prime}}^{s}\right)=f\left(x, x^{\prime}, s\right)\right) B_{x^{\prime} \cdot s^{-1}, x . s^{-1}}^{s^{-1}}$
$\mathcal{S}\left(B_{\alpha, \beta}^{M}\right)=g(\alpha, \beta, M) B_{\bar{\beta}, \bar{\alpha}}^{M^{*}}$

The co-structure of B using reconstruction theorem

One can define a basis of B :
$\mathcal{B}:\left(B_{x, x^{\prime}}^{s}\right)\left(s \in S, x, x^{\prime} \in S \cup S / A\right)$
$\left(B_{\alpha, \beta}^{M}\right)(M \in S / A, \alpha, \beta \in S \sqcup \bar{S}=\{s, \bar{s} / s \in S\}$
Product: $B_{b, b^{\prime}}^{a} \cdot B_{d, d^{\prime}}^{c}=\gamma\left(a, b, b^{\prime}, c, d, d^{\prime}\right) B_{w, w^{\prime}}^{z}$ (25formul.)
$\left(B_{t, t^{\prime}}^{g} \cdot B_{h, h^{\prime}}^{M}=\frac{\tilde{\mu}^{r}\left(\left(t^{\prime} M\right)^{*}, t^{\prime} g^{-1}, g\right)}{\tilde{\mu}^{r}\left(t M^{*}, t g^{-1}, g\right)} \delta_{t, h} \delta_{t^{\prime}, h^{\prime}} B_{t g^{-1}, t^{\prime} g^{-1}}^{g M}.\right)$
Coproduct : $\Delta\left(B_{b, b^{\prime}}^{a}\right)=\sum_{x \in \operatorname{lrr}(\mathcal{C})} B_{b, x}^{a} \otimes B_{x, b^{\prime}}^{a}$
Counit: $\epsilon\left(B_{b, b^{\prime}}^{a}\right)=\delta_{b, b^{\prime}}$
Antipode : $\left.\mathcal{S}\left(B_{x, x^{\prime}}^{s}\right)=f\left(x, x^{\prime}, s\right)\right) B_{x^{\prime} \cdot s^{-1}, x . s^{-1}}^{s^{-1}}$

$$
\mathcal{S}\left(B_{\alpha, \beta}^{M}\right)=g(\alpha, \beta, M) B \overline{\bar{\beta}}, \bar{\alpha}_{M^{*}} \quad(\overline{\bar{s}}=s)
$$

Subfactors attached to Tambara-Yamagami fusion categories

Here the structure of quantum groupoids and description of the tower of type I_{1} subfactors associated with them, have already been done

Subfactors attached to Tambara-Yamagami fusion categories

Here the structure of quantum groupoids and description of the tower of type I_{1} subfactors associated with them, have already been done

Theorem C. Mevel (10)

Subfactors attached to Tambara-Yamagami fusion categories

Here the structure of quantum groupoids and description of the tower of type I_{1} subfactors associated with them, have already been done

Theorem C. Mevel (10) T.Y. fusion categories give, for all $n \in \mathbb{N}^{*}$, a subfactors of the hyperfinite type II_{1} factor whose index is $(n+\sqrt{n})^{2}$

Subfactors attached to Tambara-Yamagami fusion categories

Here the structure of quantum groupoids and description of the tower of type I_{1} subfactors associated with them, have already been done

Theorem C. Mevel (10) T.Y. fusion categories give, for all $n \in \mathbb{N}^{*}$, a subfactors of the hyperfinite type II_{1} factor whose index is $(n+\sqrt{n})^{2}$, and principal graphs is given by :

Intermediate subfactors

Theorem (10)

Intermediate subfactors

Theorem (10)
There exists at least two types of principal graphs of intermediate subfactors associated with these Tambara-Yamagami categories $(n \in \mathbb{N}, d \mid n)$:

Intermediate subfactors

Theorem (10)
There exists at least two types of principal graphs of intermediate subfactors associated with these Tambara-Yamagami categories $(n \in \mathbb{N}, d \mid n)$:

Case 1: index $=d$
Case 2: index $=\frac{1}{d}(n+\sqrt{n})^{2}$

Intermediate subfactors

Theorem (10)

There exists at least two types of principal graphs of intermediate subfactors associated with these Tambara-Yamagami categories $(n \in \mathbb{N}, d \mid n)$:

Case 1: index $=d$

Case 2: index $=\frac{1}{d}(n+\sqrt{n})^{2}$

If n is "quadratfrei" these are exactly all possible principal graphs.

The lattice of intermed. subfactors for $S=\mathbb{Z} / p \mathbb{Z}$ and $S=\mathbb{Z} / p q \mathbb{Z}$

The lattice of intermed. subfactors for $S=\mathbb{Z} / p \mathbb{Z}$ and $S=\mathbb{Z} / p q \mathbb{Z}$

case $S=\mathbb{Z} / p \mathbb{Z}$

case $S=\mathbb{Z} / p q \mathbb{Z}$

The lattice of intermediate subfactors for $S=\mathbb{Z} / p q r \mathbb{Z}$

The lattice of intermediate subfactors for $S=\mathbb{Z} / p q r \mathbb{Z}$

REFERENCES:

1. G. Böhm, F. Nill, and K. Szlachányi, Weak Hopf algebras I. Integral theory and C*-structure, J. Algebra, 221 (1999), 385-438.
2. T. Hayashi A canonical Tannaka duality for semifinite tensor categories, Preprint (1999), math.QA/9904073.
3. C. Mevel Thesis in Caen LMNO (2010).

4- H. Pfeiffer Finitely semisimple spherical categories and modular categories are self-dual Adv. Math. 221(5) (2009) 1608-1652
5. D. Nikshych, L. Vainerman, A characterization of depth 2 subfactors of I_{1} factors, J. Func. Anal., 171 (2) (2000), 278-307.
6. D. Nikshych, L. Vainerman, A Galois correspondence for I_{1} factors and quantum groupoids, J. Func. Anal., 178 (2) (2000), 113-142.
7. D. Tambara, S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Algebra, 209 (2) (1998), 692-707.
8. L. Vainerman J.M. Vallin On Z/2Z- extensions of pointed fusion categories Banach center Publications 98 (2012) 343-366

